Negative regulation of the tumor suppressor p53 gene by microRNAs (original) (raw)
Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116: 281–297. ArticleCAS Google Scholar
Bartel DP . (2009). MicroRNAs: target recognition and regulatory functions. Cell136: 215–233. ArticleCAS Google Scholar
Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol17: 1298–1307. ArticleCAS Google Scholar
Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science282: 1497–1501. ArticleCAS Google Scholar
Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell26: 745–752. ArticleCAS Google Scholar
Chng WJ, Price-Troska T, Gonzalez-Paz N, Van Wier S, Jacobus S, Blood E et al. (2007). Clinical significance of TP53 mutation in myeloma. Leukemia21: 582–584. ArticleCAS Google Scholar
Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, Chesi M et al. (2004). Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res64: 1546–1558. ArticleCAS Google Scholar
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res34: D140–144. ArticleCAS Google Scholar
Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene24: 2899–2908. ArticleCAS Google Scholar
He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature447: 1130–1134. ArticleCAS Google Scholar
Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS et al. (2010). Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell38: 689–699. ArticleCAS Google Scholar
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . (2004). Human microRNA targets. PLoS Biol2: e363. Article Google Scholar
Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell120: 635–647. ArticleCAS Google Scholar
Kan T, Sato F, Ito T, Matsumura N, David S, Cheng Y et al. (2009). The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology136: 1689–1700. ArticleCAS Google Scholar
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. (2005). Combinatorial microRNA target predictions. Nat Genet37: 495. ArticleCAS Google Scholar
Le MTN, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V et al. (2009). MicroRNA-125b is a novel negative regulator of p53. Genes & Dev23: 862–876. ArticleCAS Google Scholar
Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120: 15–20. ArticleCAS Google Scholar
Mayer B, Oberbauer R . (2003). Mitochondrial regulation of apoptosis. News Physiol Sci18: 89–94. CASPubMed Google Scholar
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM et al. (2006). A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell126: 1203–1217. ArticleCAS Google Scholar
Park SY, Lee JH, Ha M, Nam JW, Kim VN . (2009). miR-29 miRNAs activate p53 by targeting p85α and CDC42. Nat Struct Mol Biol16: 23–29. ArticleCAS Google Scholar
Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I et al. (2008). E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell13: 272–286. ArticleCAS Google Scholar
Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D et al. (2008). MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA105: 12885–12890. ArticleCAS Google Scholar
Prendergast NJ, Atkins MR, Schatte EC, Paulson DF, Walther PJ . (1996). p53 immunohistochemical and genetic alterations are associated at high incidence with post-irradiated locally persistent prostate carcinoma. J Urol155: 1685–1692. ArticleCAS Google Scholar
Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell26: 731–743. ArticleCAS Google Scholar
Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol9: 402–412. ArticleCAS Google Scholar
Suzuki S, Adachi A, Hiraiwa A, Ohashi M, Ishibashi M, Kiyono T . (1998). Cloning and characterization of human MCM7 promoter. Gene216: 85–91. ArticleCAS Google Scholar
Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle6: 1586–1593. ArticleCAS Google Scholar
Toledo F, Wahl GM . (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer6: 909–923. ArticleCAS Google Scholar
Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature445: 661–665. ArticleCAS Google Scholar
Voeller HJ, Sugars LY, Pretlow T, Gelmann EP . (1994). p53 oncogene mutations in human prostate cancer specimens. J Urol151: 492–495. ArticleCAS Google Scholar
Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature408: 307–310. ArticleCAS Google Scholar
Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell124: 1169–1181. ArticleCAS Google Scholar
Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell137: 413–431. ArticleCAS Google Scholar
Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L et al. (1999). GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA96: 3706–3711. ArticleCAS Google Scholar
Xiong W, Wu X, Starnes S, Johnson SK, Haessler J, Wang S et al. (2008). An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood112: 4235–4246. ArticleCAS Google Scholar
Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature445: 656–660. ArticleCAS Google Scholar
Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell9: 189–198. ArticleCAS Google Scholar