Sugar-free approaches to cancer cell killing (original) (raw)
References
Aft RL, Zhang FW, Gius D . (2002). Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: mechanism of cell death. Br J Cancer87: 805–812. CASPubMed Central Google Scholar
Alves NL, Derks IA, Berk E, Spijker R, van Lier RA, Eldering E . (2006). The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity24: 703–716. ArticleCAS Google Scholar
Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P et al. (2010). Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res70: 2465–2475. CASPubMed Central Google Scholar
Boya P, Gonzalez-Polo R-A, Casares N, Perfettini J-L, Dessen P, Larochette N et al. (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol25: 1025–1040. CASPubMed Central Google Scholar
Buzzai M, Bauer DE, Jones RG, DeBerardinis RJ, Hatzivassiliou G, Elstrom RL et al. (2005). The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene24: 4165–4173. CAS Google Scholar
Caro-Maldonado A, Tait SWG, Ramirez-Peinado S, Ricci JE, Fabregat I, Green DR et al. (2010). Glucose deprivation induces an atypical form of apoptosis mediated by caspase-8 in Bax-, Bak-deficient cells. Cell Death Differ17: 1335–1344. CAS Google Scholar
Chiaradonna F, Sacco E, Manzoni R, Giorgio M, Vanoni M, Alberghina L . (2006). Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene25: 5391–5404. CAS Google Scholar
Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, Vu H, Yoon S-O et al. (2010). Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell38: 487–499. CASPubMed Central Google Scholar
Concannon CG, Tuffy LP, Weisova P, Bonner HP, Davila D, Bonner C et al. (2010). AMP kinase-mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis. J Cell Biol189: 83–94. CASPubMed Central Google Scholar
Danial NN, Gramm CF, Scorrano L, Zhang C-Y, Krauss S, Ranger AM et al. (2003). BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature424: 952–956. CASPubMed Central Google Scholar
Danial NN, Walensky LD, Zhang C-Y, Choi CS, Fisher JK, Molina AJA et al. (2008). Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med14: 144–153. CASPubMed Central Google Scholar
De Lena M, Lorusso V, Latorre A, Fanizza G, Gargano G, Caporusso L et al. (2001). Paclitaxel, cisplatin and lonidamine in advanced ovarian cancer. A phase II study. Eur J Cancer37: 364–368. CAS Google Scholar
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab7: 11–20. CAS Google Scholar
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci104: 19345–19350. CAS Google Scholar
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell10: 51–64. CASPubMed Central Google Scholar
Di Cosimo S . (2003). Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc)39: 157–174. CAS Google Scholar
DiPaola RS, Dvorzhinski D, Thalasila A, Garikapaty V, Doram D, May M et al. (2008). Therapeutic starvation and autophagy in prostate cancer: a new paradigm for targeting metabolism in cancer therapy. Prostate68: 1743–1752. CASPubMed Central Google Scholar
Dwarakanath BS, Singh S, Jain V . (1999). Optimization of tumour radiotherapy: part V--radiosensitization by 2-deoxy-D-glucose and DNA ligand hoechst-33342 in a murine tumour. Indian J Exp Biol37: 865–870. CAS Google Scholar
Dwarkanath BS, Zolzer F, Chandana S, Bauch T, Adhikari JS, Muller WU et al. (2001). Heterogeneity in 2-deoxy-D-glucose-induced modifications in energetics and radiation responses of human tumor cell lines. Int J Radiat Oncol Biol Phys50: 1051–1061. CAS Google Scholar
Egler V, Korur S, Failly M, Boulay JL, Imber R, Lino MM et al. (2008). Histone deacetylase inhibition and blockade of the glycolytic pathway synergistically induce glioblastoma cell death. Clin Cancer Res14: 3132–3140. CAS Google Scholar
Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Res64: 3892–3899. CAS Google Scholar
Fan Y, Dickman KG, Zong W-X . (2010). Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem285: 7324–7333. CAS Google Scholar
Frenzel A, Grespi F, Chmelewskij W, Villunger A . (2009). Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis14: 584–596. CASPubMed Central Google Scholar
Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature458: 762–765. CASPubMed Central Google Scholar
Geschwind J-FH, Ko YH, Torbenson MS, Magee C, Pedersen PL . (2002). Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res62: 3909–3913. CAS Google Scholar
Gonin-Giraud S, Mathieu AL, Diocou S, Tomkowiak M, Delorme G, Marvel J . (2002). Decreased glycolytic metabolism contributes to but is not the inducer of apoptosis following IL-3-starvation. Cell Death Differ9: 1147–1157. CAS Google Scholar
Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N . (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev15: 1406–1418. CASPubMed Central Google Scholar
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell30: 214–226. CASPubMed Central Google Scholar
Haga N, Naito M, Seimiya H, Tomida A, Dong J, Tsuruo T . (1998). 2-Deoxyglucose inhibits chemotherapeutic drug-induced apoptosis in human monocytic leukemia U937 cells with inhibition of c-Jun N-terminal kinase 1/stress-activated protein kinase activation. Int J Cancer76: 86–90. CAS Google Scholar
Hardie DG . (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol8: 774–785. CAS Google Scholar
Hernlund E, Hjerpe E, Avall-Lundqvist E, Shoshan M . (2009). Ovarian carcinoma cells with low levels of beta-F1-ATPase are sensitive to combined platinum and 2-deoxy-D-glucose treatment. Mol Cancer Ther8: 1916–1923. CAS Google Scholar
Hulleman E, Kazemier KM, Holleman A, VanderWeele DJ, Rudin CM, Broekhuis MJC et al. (2009). Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood113: 2014–2021. CASPubMed Central Google Scholar
Jain VK, Kalia VK, Sharma R, Maharajan V, Menon M . (1985). Effects of 2-deoxy-D-glucose on glycolysis, proliferation kinetics and radiation response of human cancer cells. Int J Radiat Oncol Biol Phys11: 943–950. CAS Google Scholar
Johnstone RW, Frew AJ, Smyth MJ . (2008). The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer8: 782–798. CASPubMed Central Google Scholar
Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell18: 283–293. CAS Google Scholar
Jones RG, Thompson CB . (2009). Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev23: 537–548. CASPubMed Central Google Scholar
Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B et al. (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab11: 390–401. CASPubMed Central Google Scholar
Kalia VK, Jain VK, Otto FJ . (1982). Optimization of cancer therapy: part IV--effects of 2-deoxy-D-glucose on radiation induced chromosomal damage in PHA-stimulated peripheral human leukocytes. Indian J Exp Biol20: 884–888. CAS Google Scholar
Kang HT, Hwang ES . (2006). 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci78: 1392–1399. CAS Google Scholar
Kaplan O, Navon G, Lyon RC, Faustino PJ, Straka EJ, Cohen JS . (1990). Effects of 2-deoxyglucose on drug-sensitive and drug-resistant human breast cancer cells: toxicity and magnetic resonance spectroscopy studies of metabolism. Cancer Res50: 544–551. CAS Google Scholar
Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY et al. (2002). The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol3: 411–421. CAS Google Scholar
Kern KA, Norton JA . (1987). Inhibition of established rat fibrosarcoma growth by the glucose antagonist 2-deoxy-D-glucose. Surgery102: 380–385. CAS Google Scholar
Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS et al. (2004). Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun324: 269–275. CAS Google Scholar
Kroemer G, Pouyssegur J . (2008). Tumor cell metabolism: cancer's achilles’ heel. Cancer Cell13: 472–482. CASPubMed Central Google Scholar
Kurtoglu M, Gao N, Shang J, Maher JC, Lehrman MA, Wangpaichitr M et al. (2007). Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther6: 3049–3058. CAS Google Scholar
Latz D, Thonke A, Juling-Pohlit L, Pohlit W . (1993). Tumor response to ionizing radiation and combined 2-deoxy-D-glucose application in EATC tumor bearing mice: monitoring of tumor size and microscopic observations. Strahlenther Onkol169: 405–411. CAS Google Scholar
Lee YJ, Galoforo SS, Berns CM, Tong WP, Kim HR, Corry PM . (1997). Glucose deprivation-induced cytotoxicity in drug resistant human breast carcinoma MCF-7/ADR cells: role of c-myc and bcl-2 in apoptotic cell death. J Cell Sci110: 681–686. CAS Google Scholar
Liang J, Shao SH, Xu Z-X, Hennessy B, Ding Z, Larrea M et al. (2007). The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol9: 218–224. CAS Google Scholar
Liu H, Savaraj N, Priebe W, Lampidis TJ . (2002). Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (model C). Biochem Pharmacol64: 1745–1751. CAS Google Scholar
Maher J, Krishan A, Lampidis T . (2004). Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions. Cancer Chemother Pharmacol53: 116–122. CAS Google Scholar
Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF et al. (2004). 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res64: 31–34. CAS Google Scholar
Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR . (2006). Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell21: 749–760. CASPubMed Central Google Scholar
Michalek RD, Rathmell JC . (2010). The metabolic life and times of a T-cell. Immunol Rev236: 190–202. CASPubMed Central Google Scholar
Munoz-Pinedo C, Robledo G, Lopez-Rivas A . (2004). Thymidylate synthase inhibition triggers glucose-dependent apoptosis in p53-negative leukemic cells. FEBS Lett570: 205–210. CAS Google Scholar
Munoz-Pinedo C, Ruiz-Ruiz C, Ruiz de Almodovar C, Palacios C, Lopez-Rivas A . (2003). Inhibition of glucose metabolism sensitizes tumor cells to death receptor-triggered apoptosis through enhancement of death-inducing signaling complex formation and apical procaspase-8 processing. J Biol Chem278: 12759–12768. CAS Google Scholar
Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T et al. (2008). Epigenetic control of rDNA loci in response to intracellular energy status. Cell133: 627–639. CAS Google Scholar
Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell7: 683–694. CASPubMed Central Google Scholar
Nam SY, Amoscato AA, Lee YJ . (2002). Low glucose-enhanced TRAIL cytotoxicity is mediated through the ceramide-Akt-FLIP pathway. Oncogene21: 337–346. CASPubMed Central Google Scholar
Oudard S, Carpentier A, Banu E, Fauchon F, Celerier D, Poupon MF et al. (2003). Phase II study of lonidamine and diazepam in the treatment of recurrent glioblastoma multiforme. J Neurooncol63: 81–86. Google Scholar
Papaldo P, Lopez M, Cortesi E, Cammilluzzi E, Antimi M, Terzoli E et al. (2003). Addition of either lonidamine or granulocyte colony-stimulating factor does not improve survival in early breast cancer patients treated with high-dose epirubicin and cyclophosphamide. J Clin Oncol21: 3462–3468. CAS Google Scholar
Pathania D, Millard M, Neamati N . (2009). Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev61: 1250–1275. CAS Google Scholar
Pelicano H, Martin DS, Xu RH, Huang P . (2006). Glycolysis inhibition for anticancer treatment. Oncogene25: 4633–4646. CASPubMed Central Google Scholar
Pradelli LA, Beneteau M, Chauvin C, Jacquin MA, Marchetti S, Munoz-Pinedo C et al. (2010). Glycolysis inhibition sensitizes tumor cells to death receptors-induced apoptosis by AMP kinase activation leading to Mcl-1 block in translation. Oncogene29: 1641–1652. CAS Google Scholar
Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND et al. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell129: 1337–1349. CASPubMed Central Google Scholar
Raez LE, Langmuir V, Tolba K, Rocha-Lima CM, Papadopoulos K, Kroll S et al. (2007). Responses to the combination of the glycolytic inhibitor 2-deoxy-glucose (2DG) and docetaxel (DC) in patients with lung and head and neck (H/N) carcinomas. J Clin Oncol25: 14025. Google Scholar
Raez LE, Rosenblatt J, Schlesselman J, Langmuir V, Tidmarsh G, Rocha-Lima C et al. (2005). Combining glycolytic inhibitors with chemotherapy: Phase I trial of 2-deoxyglucose and docetaxel in patients with solid tumors. J Clin Oncol, 2005 ASCO Annu Meet Proc23: 3190. Google Scholar
Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, Bianchi G et al. (2008). Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci105: 8215–8220. CAS Google Scholar
Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB . (2003). Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol23: 7315–7328. CASPubMed Central Google Scholar
Rosbe KW, Brann TW, Holden SA, Teicher BA, Frei III E . (1989). Effect of lonidamine on the cytotoxicity of four alkylating agents in vitro. Cancer Chemother Pharmacol25: 32–36. CAS Google Scholar
Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA101: 3329–3335. CAS Google Scholar
Shim H, Chun YS, Lewis BC, Dang CV . (1998). A unique glucose-dependent apoptotic pathway induced by c-Myc. Proc Natl Acad Sci USA95: 1511–1516. CAS Google Scholar
Singh D, Banerji AK, Dwarakanath BS, Tripathi RP, Gupta JP, Mathew TL et al. (2005). Optimizing cancer radiotherapy with 2-deoxy-D-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlentherapie und Onkologie181: 507–514. Google Scholar
Singh SP, Singh S, Jain V . (1990). Effects of 5-bromo-2-deoxyuridine and 2-deoxy-D-glucose on radiation-induced micronuclei in mouse bone marrow. Int J Radiat Biol58: 791–797. CAS Google Scholar
Suzuki A, Kusakai G, Kishimoto A, Lu J, Ogura T, Esumi H . (2003). ARK5 suppresses the cell death induced by nutrient starvation and death receptors via inhibition of caspase 8 activation, but not by chemotherapeutic agents or UV irradiation. Oncogene22: 6177–6182. CAS Google Scholar
Swamy RK, Manickam J, Adhikari JS, Dwarakanath BS . (2005). Glycolytic inhibitor, 2-deoxy-D-glucose, does not enhance radiation-induced apoptosis in mouse thymocytes and splenocytes in vitro. Indian J Exp Biol43: 686–692. CAS Google Scholar
Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M et al. (2008). Regulation of autophagy by cytoplasmic p53. Nat Cell Biol10: 676–687. CASPubMed Central Google Scholar
Taylor RC, Cullen SP, Martin SJ . (2008). Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol9: 231–241. CAS Google Scholar
Teicher BA, Herman TS, Holden SA, Epelbaum R, Liu SD, Frei III E . (1991). Lonidamine as a modulator of alkylating agent activity in vitro and in vivo. Cancer Res51: 780–784. CAS Google Scholar
Tennant DA, Duran RV, Gottlieb E . (2010). Targeting metabolic transformation for cancer therapy. Nat Rev Cancer10: 267–277. CAS Google Scholar
Thakkar NS, Potten CS . (1993). Inhibition of doxorubicin-induced apoptosis in vivo by 2-deoxy-D-glucose. Cancer Res53: 2057–2060. CAS Google Scholar
Tomida A, Yun J, Tsuruo T . (1996). Glucose-regulated stresses induce resistance to camptothecin in human cancer cells. Int J Cancer68: 391–396. CAS Google Scholar
Tong X, Zhao F, Mancuso A, Gruber JJ, Thompson CB . (2009). The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc Natl Acad Sci106: 21660–21665. CAS Google Scholar
Uyeda K, Repa JJ . (2006). Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab4: 107–110. CAS Google Scholar
Vander Heiden MG, Cantley LC, Thompson CB . (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324: 1029–1033. CASPubMed Central Google Scholar
Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB . (2001). Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol21: 5899–5912. CASPubMed Central Google Scholar
Vousden KH, Ryan KM . (2009). p53 and metabolism. Nat Rev Cancer9: 691–700. CAS Google Scholar
Wang X, Proud CG . (2009). Nutrient control of TORC1, a cell-cycle regulator. Trends in Cell Biol19: 260–267. CAS Google Scholar
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB . (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science324: 1076–1080. CASPubMed Central Google Scholar
Wood TE, Dalili S, Simpson CD, Hurren R, Mao X, Saiz FS et al. (2008). A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol Cancer Ther7: 3546–3555. CAS Google Scholar
Xu R-h, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al. (2005). Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res65: 613–621. CASPubMed Central Google Scholar
Yamada M, Tomida A, Yun J, Cai B, Yoshikawa H, Taketani Y et al. (1999). Cellular sensitization to cisplatin and carboplatin with decreased removal of platinum-DNA adduct by glucose-regulated stress. Cancer Chemother Pharmacol44: 59–64. CAS Google Scholar
Yang C, Sudderth J, Dang T, Bachoo RG, McDonald JG, DeBerardinis RJ . (2009). Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res69: 7986–7993. CASPubMed Central Google Scholar
Yi CH, Sogah DK, Boyce M, Degterev A, Christofferson DE, Yuan J . (2007). A genome-wide RNAi screen reveals multiple regulators of caspase activation. J Cell Biol179: 619–626. CASPubMed Central Google Scholar
Youle RJ, Strasser A . (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol9: 47–59. CAS Google Scholar
Yun J, Tomida A, Nagata K, Tsuruo T . (1995). Glucose-regulated stresses confer resistance to VP-16 in human cancer cells through a decreased expression of DNA topoisomerase II. Oncol Res7: 583–590. CAS Google Scholar
Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y . (2007). Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol178: 93–105. CASPubMed Central Google Scholar
Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell87: 619–628. CASPubMed Central Google Scholar
Zhang XD, Deslandes E, Villedieu M, Poulain L, Duval M, Gauduchon P et al. (2006). Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer Res26: 3561–3566. CAS Google Scholar
Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T et al. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science327: 1000–1004. CASPubMed Central Google Scholar
Zhao Y, Altman BJ, Coloff JL, Herman CE, Jacobs SR, Wieman HL et al. (2007). Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol Cell Biol27: 4328–4339. CASPubMed Central Google Scholar
Zhao Y, Coloff JL, Ferguson EC, Jacobs SR, Cui K, Rathmell JC . (2008). Glucose metabolism attenuates p53 and Puma-dependent cell death upon growth factor deprivation. J Biol Chem283: 36344–36353. M803580200. CASPubMed Central Google Scholar