TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1 (original) (raw)
Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al. (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev18: 2893–2904. ArticleCAS Google Scholar
Chung JW, Jeon JH, Yoon SR, Choi I . (2006). Vitamin D3 upregulated protein 1 (VDUP1) is a regulator for redox signaling and stress-mediated diseases. J Dermatol33: 662–669. ArticleCAS Google Scholar
Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G . (2001). Mammalian TOR: a homeostatic ATP sensor. Science294: 1102–1105. ArticleCAS Google Scholar
DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW . (2008). Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev22: 239–251. ArticleCAS Google Scholar
Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K et al. (2002). REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell10: 995–1005. ArticleCAS Google Scholar
Fidler IJ, Radinsky R . (1996). Search for genes that suppress cancer metastasis. J Natl Cancer Inst88: 1700–1703. ArticleCAS Google Scholar
Goldberg SF, Miele ME, Hatta N, Takata M, Paquette-Straub C, Freedman LP et al. (2003). Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res63: 432–440. CASPubMed Google Scholar
Han SH, Jeon JH, Ju HR, Jung U, Kim KY, Yoo HS et al. (2003). VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene22: 4035–4046. ArticleCAS Google Scholar
Hardie DG, Hawley SA . (2001). AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays23: 1112–1119. ArticleCAS Google Scholar
Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D et al. (1996). Characterization of the AMP-activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem271: 27879–27887. ArticleCAS Google Scholar
Horak P, Crawford AR, Vadysirisack DD, Nash ZM, DeYoung MP, Sgroi D et al. (2010). Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci USA107: 4675–4680. ArticleCAS Google Scholar
Inoki K, Zhu T, Guan KL . (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell115: 577–590. ArticleCAS Google Scholar
Jin HO, Seo SK, Woo SH, Choe TB, Hong SI, Kim JI et al. (2009a). Nuclear protein 1 induced by ATF4 in response to various stressors acts as a positive regulator on the transcriptional activation of ATF4. IUBMB Life61: 1153–1158. ArticleCAS Google Scholar
Jin HO, Seo SK, Woo SH, Kim ES, Lee HC, Yoo DH et al. (2009b). Activating transcription factor 4 and CCAAT/enhancer-binding protein-beta negatively regulate the mammalian target of rapamycin via Redd1 expression in response to oxidative and endoplasmic reticulum stress. Free Radic Biol Med46: 1158–1167. ArticleCAS Google Scholar
Junn E, Han SH, Im JY, Yang Y, Cho EW, Um HD et al. (2000). Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J Immunol164: 6287–6295. ArticleCAS Google Scholar
Kang HT, Hwang ES . (2006). 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci78: 1392–1399. ArticleCAS Google Scholar
Katiyar S, Liu E, Knutzen CA, Lang ES, Lombardo CR, Sankar S et al. (2009). REDD1, an inhibitor of mTOR signalling, is regulated by the CUL4A-DDB1 ubiquitin ligase. EMBO Rep10: 866–872. ArticleCAS Google Scholar
Kim KY, Shin SM, Kim JK, Paik SG, Yang Y, Choi I . (2004). Heat shock factor regulates VDUP1 gene expression. Biochem Biophys Res Commun315: 369–375. ArticleCAS Google Scholar
Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS . (1994). The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr4: 1–18. Article Google Scholar
Nakamura H, Masutani H, Yodoi J . (2006). Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer. Semin Cancer Biol16: 444–451. ArticleCAS Google Scholar
Nishinaka Y, Masutani H, Oka S, Matsuo Y, Yamaguchi Y, Nishio K et al. (2004). Importin alpha1 (Rch1) mediates nuclear translocation of thioredoxin-binding protein-2/vitamin D(3)-up-regulated protein 1. J Biol Chem279: 37559–37565. ArticleCAS Google Scholar
Oka S, Liu W, Masutani H, Hirata H, Shinkai Y, Yamada S et al. (2006). Impaired fatty acid utilization in thioredoxin binding-2 (TBP-2)-deficient mice: a unique animal model of Reye syndrome. FASEB J20: 121–123. ArticleCAS Google Scholar
Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al. (2009). DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell137: 873–886. ArticleCAS Google Scholar
Saxena G, Chen J, Shalev A . (2010). Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. J Biol Chem285: 3997–4005. ArticleCAS Google Scholar
Schmelzle T, Hall MN . (2000). TOR, a central controller of cell growth. Cell103: 253–262. ArticleCAS Google Scholar
Schneider A, Younis RH, Gutkind JS . (2008). Hypoxia-induced energy stress inhibits the mTOR pathway by activating an AMPK/REDD1 signaling axis in head and neck squamous cell carcinoma. Neoplasia10: 1295–1302. ArticleCAS Google Scholar
Schulze PC, De Keulenaer GW, Yoshioka J, Kassik KA, Lee RT . (2002). Vitamin D3-upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin. Circ Res91: 689–695. ArticleCAS Google Scholar
Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT . (2004). Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J Biol Chem279: 30369–30374. ArticleCAS Google Scholar
Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA et al. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science310: 1642–1646. ArticleCAS Google Scholar
Sheth SS, Bodnar JS, Ghazalpour A, Thipphavong CK, Tsutsumi S, Tward AD et al. (2006). Hepatocellular carcinoma in Txnip-deficient mice. Oncogene25: 3528–3536. ArticleCAS Google Scholar
Shor B, Gibbons JJ, Abraham RT, Yu K . (2009). Targeting mTOR globally in cancer: thinking beyond rapamycin. Cell Cycle8: 3831–3837. ArticleCAS Google Scholar
Sofer A, Lei K, Johannessen CM, Ellisen LW . (2005). Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol25: 5834–5845. ArticleCAS Google Scholar
Stein SC, Woods A, Jones NA, Davison MD, Carling D . (2000). The regulation of AMP-activated protein kinase by phosphorylation. Biochem J345: 437–443. ArticleCAS Google Scholar
Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE . (2008). Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl AcadSci USA105: 6912–6917. ArticleCAS Google Scholar
Sudarsanam S, Johnson DE . (2010). Functional consequences of mTOR inhibition. Curr Opin Drug Discov Devel13: 31–40. CASPubMed Google Scholar
Towler MC, Hardie DG . (2007). AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res100: 328–341. ArticleCAS Google Scholar
Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol9: 316–323. ArticleCAS Google Scholar
Wang H, Kubica N, Ellisen LW, Jefferson LS, Kimball SR . (2006a). Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem281: 39128–39134. ArticleCAS Google Scholar
Wang Z, Rong YP, Malone MH, Davis MC, Zhong F, Distelhorst CW . (2006b). Thioredoxin-interacting protein (txnip) is a glucocorticoid-regulated primary response gene involved in mediating glucocorticoid-induced apoptosis. Oncogene25: 1903–1913. ArticleCAS Google Scholar
Whitney ML, Jefferson LS, Kimball SR . (2009). ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem Biophys Res Commun379: 451–455. ArticleCAS Google Scholar