Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1 (original) (raw)
Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY et al. (1997). AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science277: 965–968. ArticleCAS Google Scholar
Belandia B, Parker MG . (2000). Functional interaction between the p160 coactivator proteins and the transcriptional enhancer factor family of transcription factors. J Biol Chem275: 30801–30805. ArticleCAS Google Scholar
Bennett EJ, Rush J, Gygi SP, Harper JW . (2010). Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell143: 951–965. ArticleCAS Google Scholar
Bunce MW, Boronenkov IV, Anderson RA . (2008). Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J Biol Chem283: 8678–8686. ArticleCAS Google Scholar
Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L et al. (1997). Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell90: 569–580. ArticleCAS Google Scholar
Chen MH, Wilson CW, Li YJ, Law KK, Lu CS, Gacayan R et al. (2009). Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev23: 1910–1928. ArticleCAS Google Scholar
Claiborn KC, Sachdeva MM, Cannon CE, Groff DN, Singer JD, Stoffers DA . (2010). Pcif1 modulates Pdx1 protein stability and pancreatic beta cell function and survival in mice. J Clin Invest120: 3713–3721. ArticleCAS Google Scholar
De Marchis L, Cropp C, Sheng ZM, Bargo S, Callahan R . (2004). Candidate target genes for loss of heterozygosity on human chromosome 17q21. Br J Cancer90: 2384–2389. ArticleCAS Google Scholar
Durocher F, Tonin P, Shattuck-Eidens D, Skolnick M, Narod SA, Simard J . (1996). Mutation analysis of the BRCA1 gene in 23 families with cases of cancer of the breast, ovary, and multiple other sites. J Med Genet33: 814–819. ArticleCAS Google Scholar
Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F et al. (2005). Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol25: 2795–2807. ArticleCAS Google Scholar
Furukawa M, He YJ, Borchers C, Xiong Y . (2003). Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol5: 1001–1007. ArticleCAS Google Scholar
Geyer R, Wee S, Anderson S, Yates J, Wolf DA . (2003). BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell12: 783–790. ArticleCAS Google Scholar
Glass CK, Rosenfeld MG . (2000). The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev14: 121–141. CASPubMed Google Scholar
Goel A, Janknecht R . (2004). Concerted activation of ETS protein ER81 by p160 coactivators, the acetyltransferase p300 and the receptor tyrosine kinase HER2/Neu. J Biol Chem279: 14909–14916. ArticleCAS Google Scholar
Halachmi S, Marden E, Martin G, MacKay H, Abbondanza C, Brown M . (1994). Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science264: 1455–1458. ArticleCAS Google Scholar
Hernandez-Munoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E et al. (2005). Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci USA102: 7635–7640. ArticleCAS Google Scholar
Hershko A, Ciechanover A . (1998). The ubiquitin system. Annu Rev Biochem67: 425–479. ArticleCAS Google Scholar
Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR . (1996). GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci USA93: 4948–4952. ArticleCAS Google Scholar
Jin J, Ang XL, Shirogane T, Wade Harper J . (2005). Identification of substrates for F-box proteins. Methods Enzymol399: 287–309. ArticleCAS Google Scholar
Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW . (2004). Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev18: 2573–2580. ArticleCAS Google Scholar
Kajiro M, Hirota R, Nakajima Y, Kawanowa K, So-ma K, Ito I et al. (2009). The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol11: 312–319. ArticleCAS Google Scholar
Kuang SQ, Liao L, Zhang H, Lee AV, O'Malley BW, Xu J . (2004). AIB1/SRC-3 deficiency affects insulin-like growth factor I signaling pathway and suppresses v-Ha-ras-induced breast cancer initiation and progression in mice. Cancer Res64: 1875–1885. ArticleCAS Google Scholar
Kumar RPD, O'Malley BW . (2008). NR Coregulators and Human Diseases. World Scientific: Singapore; London, xi, 602 p. Book Google Scholar
Kwon JE, La M, Oh KH, Oh YM, Kim GR, Seol JH et al. (2006). BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase. J Biol Chem281: 12664–12672. ArticleCAS Google Scholar
Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y et al. (2009). KEAP1 E3 Ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol Cell36: 131–140. ArticleCAS Google Scholar
Lee SK, Kim HJ, Na SY, Kim TS, Choi HS, Im SY et al. (1998). Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J Biol Chem273: 16651–16654. ArticleCAS Google Scholar
Lerebours F, Bertheau P, Bieche I, Driouch K, De The H, Hacene K et al. (2002). Evidence of chromosome regions and gene involvement in inflammatory breast cancer. Int J Cancer102: 618–622. ArticleCAS Google Scholar
Li C, Liang YY, Feng XH, Tsai SY, Tsai MJ, O'Malley BW . (2008a). Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. Mol Cell31: 835–849. ArticleCAS Google Scholar
Li C, Wu RC, Amazit L, Tsai SY, Tsai MJ, O'Malley BW . (2007a). Specific amino acid residues in the basic helix-loop-helix domain of SRC-3 are essential for its nuclear localization and proteasome-dependent turnover. Mol Cell Biol27: 1296–1308. Article Google Scholar
Li H, Gomes PJ, Chen JD . (1997). RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci USA94: 8479–8484. ArticleCAS Google Scholar
Li LB, Louie MC, Chen HW, Zou JX . (2008b). Proto-oncogene ACTR/AIB1 promotes cancer cell invasion by up-regulating specific matrix metalloproteinase expression. Cancer Lett261: 64–73. ArticleCAS Google Scholar
Li X, Amazit L, Long W, Lonard DM, Monaco JJ, O'Malley BW . (2007b). Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGgamma-proteasome pathway. Mol Cell26: 831–842. Article Google Scholar
Li X, Lonard DM, Jung SY, Malovannaya A, Feng Q, Qin J et al. (2006). The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome. Cell124: 381–392. ArticleCAS Google Scholar
Liu J, Ghanim M, Xue L, Brown CD, Iossifov I, Angeletti C et al. (2009). Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science323: 1218–1222. ArticleCAS Google Scholar
Louie MC, Zou JX, Rabinovich A, Chen HW . (2004). ACTR/AIB1 functions as an E2F1 coactivator to promote breast cancer cell proliferation and antiestrogen resistance. Mol Cell Biol24: 5157–5171. ArticleCAS Google Scholar
Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R et al. (2007). Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO J26: 1511–1521. ArticleCAS Google Scholar
McKenna NJ, O'Malley BW . (2002). Combinatorial control of gene expression by nuclear receptors and coregulators. Cell108: 465–474. ArticleCAS Google Scholar
Michaelson JS, Bader D, Kuo F, Kozak C, Leder P . (1999). Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev13: 1918–1923. ArticleCAS Google Scholar
O'Malley BW, Kumar R . (2009). Nuclear receptor coregulators in cancer biology. Cancer Res69: 8217–8222. ArticleCAS Google Scholar
Onate SA, Tsai SY, Tsai MJ, O'Malley BW . (1995). Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science270: 1354–1357. ArticleCAS Google Scholar
Orsetti B, Courjal F, Cuny M, Rodriguez C, Theillet C . (1999). 17q21–q25 aberrations in breast cancer: combined allelotyping and CGH analysis reveals 5 regions of allelic imbalance among which two correspond to DNA amplification. Oncogene18: 6262–6270. ArticleCAS Google Scholar
Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA et al. (2003). Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst95: 353–361. ArticleCAS Google Scholar
Petroski MD, Deshaies RJ . (2005). Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol6: 9–20. ArticleCAS Google Scholar
Pickart CM . (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem70: 503–533. ArticleCAS Google Scholar
Pintard L, Willis JH, Willems A, Johnson JL, Srayko M, Kurz T et al. (2003). The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature425: 311–316. ArticleCAS Google Scholar
Planas-Silva MD, Shang Y, Donaher JL, Brown M, Weinberg RA . (2001). AIB1 enhances estrogen-dependent induction of cyclin D1 expression. Cancer Res61: 3858–3862. CASPubMed Google Scholar
Qin L, Liao L, Redmond A, Young L, Yuan Y, Chen H et al. (2008). The AIB1 oncogene promotes breast cancer metastasis by activation of PEA3-mediated matrix metalloproteinase 2 (MMP2) and MMP9 expression. Mol Cell Biol28: 5937–5950. ArticleCAS Google Scholar
Radford DM, Fair KL, Phillips NJ, Ritter JH, Steinbrueck T, Holt MS et al. (1995). Allelotyping of ductal carcinoma in situ of the breast: deletion of loci on 8p, 13q, 16q, 17p and 17q. Cancer Res55: 3399–3405. CASPubMed Google Scholar
Rivers A, Gietzen KF, Vielhaber E, Virshup DM . (1998). Regulation of casein kinase I epsilon and casein kinase I delta by an in vivo futile phosphorylation cycle. J Biol Chem273: 15980–15984. ArticleCAS Google Scholar
Sakanaka C . (2002). Phosphorylation and regulation of beta-catenin by casein kinase I epsilon. J Biochem132: 697–703. ArticleCAS Google Scholar
Shirogane T, Jin J, Ang XL, Harper JW . (2005). SCFbeta-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J Biol Chem280: 26863–26872. ArticleCAS Google Scholar
Takeshita A, Cardona GR, Koibuchi N, Suen CS, Chin WW . (1997). TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J Biol Chem272: 27629–27634. ArticleCAS Google Scholar
Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY et al. (2006). Critical role for Daxx in regulating Mdm2. Nat Cell Biol8: 855–862. ArticleCAS Google Scholar
Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK et al. (1997). The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature387: 677–684. ArticleCAS Google Scholar
Torres-Arzayus MI, Font de Mora J, Yuan J, Vazquez F, Bronson R, Rue M et al. (2004). High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell6: 263–274. ArticleCAS Google Scholar
Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H . (1996). TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J15: 3667–3675. ArticleCAS Google Scholar
Wang Z, Rose DW, Hermanson O, Liu F, Herman T, Wu W et al. (2000). Regulation of somatic growth by the p160 coactivator p/CIP. Proc Natl Acad Sci USA97: 13549–13554. ArticleCAS Google Scholar
Welcker M, Clurman BE . (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer8: 83–93. ArticleCAS Google Scholar
Werbajh S, Nojek I, Lanz R, Costas MA . (2000). RAC-3 is a NF-kappa B coactivator. FEBS Lett485: 195–199. ArticleCAS Google Scholar
Wu RC, Feng Q, Lonard DM, O'Malley BW . (2007). SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell129: 1125–1140. ArticleCAS Google Scholar
Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O'Malley BW . (2000). The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci USA97: 6379–6384. ArticleCAS Google Scholar
Xu L, Wei Y, Reboul J, Vaglio P, Shin TH, Vidal M et al. (2003). BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature425: 316–321. ArticleCAS Google Scholar
Yan J, Erdem H, Li R, Cai Y, Ayala G, Ittmann M et al. (2008). Steroid receptor coactivator-3/AIB1 promotes cell migration and invasiveness through focal adhesion turnover and matrix metalloproteinase expression. Cancer Res68: 5460–5468. ArticleCAS Google Scholar
Yan J, Yu CT, Ozen M, Ittmann M, Tsai SY, Tsai MJ . (2006). Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res66: 11039–11046. ArticleCAS Google Scholar
Yi P, Feng Q, Amazit L, Lonard DM, Tsai SY, Tsai MJ et al. (2008). Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1. Mol Cell29: 465–476. ArticleCAS Google Scholar
Yu C, York B, Wang S, Feng Q, Xu J, O'Malley BW . (2007). An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol Cell25: 765–778. ArticleCAS Google Scholar
Zhou G, Hashimoto Y, Kwak I, Tsai SY, Tsai MJ . (2003). Role of the steroid receptor coactivator SRC-3 in cell growth. Mol Cell Biol23: 7742–7755. ArticleCAS Google Scholar
Zhou HJ, Yan J, Luo W, Ayala G, Lin SH, Erdem H et al. (2005). SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res65: 7976–7983. ArticleCAS Google Scholar
Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M et al. (2009). Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell36: 39–50. ArticleCAS Google Scholar