Nanoparticle-mediated in vitro delivery of E4orf1 to preadipocytes is a clinically relevant delivery system to improve glucose uptake (original) (raw)
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14:88. Article Google Scholar
Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10. ArticleCAS Google Scholar
Na H-N, Hegde V, Dubuisson O, Dhurandhar NV. E4orf1 enhances glucose uptake independent of proximal insulin signaling. PLoS ONE. 2016;11:e0161275. Article Google Scholar
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–223. ArticleCAS Google Scholar
Dhurandhar NV. Insulin sparing action of adenovirus 36 and its E4orf1 protein. J Diabetes Complicat. 2013;27:191–9. Article Google Scholar
Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes. 2006;55:2392–7. ArticleCAS Google Scholar
Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proenca C, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009;41:1110–5. ArticleCAS Google Scholar
Kovacs P, Hanson RL, Lee YH, Yang X, Kobes S, Permana PA, et al. The role of insulin receptor substrate-1 gene (IRS1) in type 2 diabetes in Pima Indians. Diabetes. 2003;52:3005–9. ArticleCAS Google Scholar
Danielsson A, Ost A, Lystedt E, Kjolhede P, Gustavsson J, Nystrom FH, et al. Insulin resistance in human adipocytes occurs downstream of IRS1 after surgical cell isolation but at the level of phosphorylation of IRS1 in type 2 diabetes. FEBS J. 2005;272:141–51. ArticleCAS Google Scholar
Dhurandhar EJ, Krishnapuram R, Hegde V, Dubuisson O, Tao R, Dong XC, et al. E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia. PLoS ONE. 2012;7:e47813. ArticleCAS Google Scholar
Dhurandhar EJ, Dubuisson O, Mashtalir N, Krishnapuram R, Hegde V, Dhurandhar NV. E4orf1: a novel ligand that improves glucose disposal in cell culture. PLoS ONE. 2011;6:e23394. ArticleCAS Google Scholar
Shastri AA, Hegde V, Peddibhotla S, Feizy Z, Dhurandhar NV. E4orf1: a protein for enhancing glucose uptake despite impaired proximal insulin signaling. PLoS ONE. 2018;13:e0208427. Article Google Scholar
Hegde V, Na HN, Dubuisson O, Burke SJ, Collier JJ, Burk D, et al. An adenovirus-derived protein: a novel candidate for anti-diabetic drug development. Biochimie. 2016;121:140–50. ArticleCAS Google Scholar
McMurphy TB, Huang W, Xiao R, Liu X, Dhurandhar NV, Cao L. Hepatic expression of adenovirus 36 E4ORF1 improves glycemic control and promotes glucose metabolism through AKT activation. Diabetes. 2017;66:358–71. ArticleCAS Google Scholar
Kusminski CM, Gallardo-Montejano VI, Wang ZV, Hegde V, Bickel PE, Dhurandhar NV, et al. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte. Mol Metab. 2015;4:653–64. ArticleCAS Google Scholar
Yoon I, Park S, Kim R, Ko H, Nam J. Insulin-sparing and fungible effects of E4orf1 combined with an adipocyte-targeting sequence in mouse models of type 1 and type 2 diabetes. Int J Obes. 2017;41:1601. ArticleCAS Google Scholar
Zhang H, Zhai Y, Wang J, Zhai G. New progress and prospects: the application of nanogel in drug delivery. Mater Sci Eng C Mater Biolog Appl. 2016;60:560–8. ArticleCAS Google Scholar
Na K, Park K-H, Kim SW, Bae YH. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Controlled Release. 2000;69:225–36. ArticleCAS Google Scholar
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592–9. ArticleCAS Google Scholar
Kelly C, Jefferies C, Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:727241. Article Google Scholar
Clogston JD, Patri AK. Zeta potential measurement. In: Characterization of nanoparticles intended for drug delivery. Springer; 2011. p. 63–70.
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10:57. Article Google Scholar
Zu Y, Overby H, Ren G, Fan Z, Zhao L, Wang S. Resveratrol liposomes and lipid nanocarriers: comparison of characteristics and inducing browning of white adipocytes. Colloids Surf B: Biointerf. 2018;164:414–23. ArticleCAS Google Scholar
Yu M, Wu J, Shi J, Farokhzad OC. Nanotechnology for protein delivery: overview and perspectives. J Controlled Rel. 2016;240:24–37. ArticleCAS Google Scholar
Zhang J, Nie S, Martinez-Zaguilan R, Sennoune SR, Wang S. Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles. J Nutr Biochem. 2016;30:14–23. ArticleCAS Google Scholar
Lee KY, Yuk SH. Polymeric protein delivery systems. Progr Polymer Sci. 2007;32:669–97. ArticleCAS Google Scholar
Chang H-I, Yeh M-K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomed. 2012;7:49. CAS Google Scholar
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6:319–27. ArticleCAS Google Scholar
Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci. 2001;90:667–80. ArticleCAS Google Scholar
Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv. 2007;4:297–305. ArticleCAS Google Scholar
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9:12. Article Google Scholar
Zhang JA, Xuan T, Parmar M, Ma L, Ugwu S, Ali S, et al. Development and characterization of a novel liposome-based formulation of SN-38. Int J Pharm. 2004;270:93–107. ArticleCAS Google Scholar
Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res. 2013;12:255–64. Google Scholar
Knudsen KB, Northeved H, Ek PK, Permin A, Gjetting T, Andresen TL, et al. In vivo toxicity of cationic micelles and liposomes. Nanomed Nanotechnol Biol Med. 2015;11:467–77. ArticleCAS Google Scholar
Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873–96. ArticleCAS Google Scholar
Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immun. 1999;17:593–623. ArticleCAS Google Scholar
Krishnapuram R, Dhurandhar EJ, Dubuisson O, Hegde V, Dhurandhar NV. Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal. PLoS ONE. 2013;8:e60651. ArticleCAS Google Scholar
Shastri A, Peddibhotla S, Feizy Z, Hegde V, Dhurandhar NV. E4orf1 protein requires the distal but not proximal insulin signaling to enhance Glut4 translocation. FASEB J. 2017;31(Suppl 1):31.2–.2. Google Scholar
Na H-N, Dubuisson O, Hegde V, Nam J-H, Dhurandhar NV. Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in the presence of inflammatory cytokines. Biochimie. 2016;124:3–10. ArticleCAS Google Scholar