- Nelson, N. & Junge, W. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 84, 659–683 (2015).
Article CAS Google Scholar
- Eberhard, S., Finazzi, G. & Wollmann, F.-A. The dynamics of photosynthesis. Annu. Rev. Genet. 42, 463–515 (2008).
Article CAS Google Scholar
- Umena, Y., Kawakami, K., Shen, J. R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).
Article CAS Google Scholar
- Hasan, S. S., Yamashita, E., Baniulis, D. & Cramer, W. A. Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b_6_f complex. Proc. Natl Acad. Sci. USA 110, 4297–4302 (2013).
Article CAS Google Scholar
- Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).
Article CAS Google Scholar
- Heinz, S., Liauw, P., Nickelsen, J. & Nowaczyk, M. Analysis of photosystem II biogenesis in cyanobacteria. Biochim. Biophys. Acta 1857, 274–287 (2016).
Article CAS Google Scholar
- Nixon, P. J., Michoux, F., Yu, J., Boehm, M. & Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 106, 1–16 (2010).
Article CAS Google Scholar
- Nickelsen, J. & Rengstl, B. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant Biol. 64, 609–635 (2013).
Article CAS Google Scholar
- Komenda, J., Sobotka, R. & Nixon, P. J. Assembling and maintaining the photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant Biol. 15, 245–251 (2012).
Article CAS Google Scholar
- Rast, A., Rengstl, B., Heinz, S., Klingl, A. & Nickelsen, J. The role of Slr0151, a tetratricopeptide repeat protein from Synechocystis sp. PCC 6803, during photosystem II assembly and repair. Front. Plant Sci. 7, 605 (2016).
Article Google Scholar
- Sacharz, J. et al. Sub-cellular location of FtsH proteases in the cyanobacterium Synechocystis sp. PCC 6803 suggests localised PSII repair zones in the thylakoid membranes. Mol. Microbiol. 96, 448–462 (2015).
Article CAS Google Scholar
- Stengel, A. et al. Initial steps of photosystem II de novo assembly and preloading with manganese take place in biogenesis centers in Synechocystis. Plant Cell 24, 660–675 (2012).
Article CAS Google Scholar
- Liberton, M., Howard Berg, R., Heuser, J., Roth, R. & Pakrasi, H. B. Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227, 129–138 (2006).
Article Google Scholar
- Nierzwicki-Bauer, S. A., Balkwill, D. L. & Stevens, S. E. Three-dimensional ultrastructure of a unicellular cyanobacterium. J. Cell Biol. 97, 713–722 (1983).
Article CAS Google Scholar
- van de Meene, A. M., Hohmann-Marriott, M. F., Vermaas, W. F. & Roberson, R. W. The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch. Microbiol. 184, 259–270 (2006).
Article CAS Google Scholar
- Armbruster, U. et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 25, 2661–2678 (2013).
Article CAS Google Scholar
- Heinz, S. et al. Thylakoid membrane architecture in Synechocystis depends on CurT, a homolog of the granal CURVATURE THYLAKOID1 proteins. Plant Cell 28, 2238–2260 (2016).
Article CAS Google Scholar
- Kunkel, D. D. Thylakoid centers: structures associated with the cyanobacterial photosynthetic membrane system. Arch. Microbiol. 133, 97–99 (1982).
Article Google Scholar
- Engel, B. D. et al. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4, e04889 (2015).
Article Google Scholar
- Tauschel, H. D. & Drews, G. Thylakoidmorphogenese bei Rhodopseudomonas palustris. Archiv Mikrobiologie 59, 381–404 (1967).
Article CAS Google Scholar
- Remsen, C. C., Watson, S. W., Waterbury, J. B. & Trüper, H. G. Fine structure of Ectothiorhodospira mobilis Pelsh. J. Bacteriol. 95, 2374–2392 (1968).
CAS PubMed PubMed Central Google Scholar
- Noble, J. M. et al. Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria. Mol. Microbiol. 109, 812–825 (2018).
Article CAS Google Scholar
- Arteni, A. A., Ajlani, G. & Boekema, E. J. Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochim. Biophys. Acta 1787, 272–279 (2009).
Article CAS Google Scholar
- Chang, L. et al. Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res. 25, 726–737 (2015).
Article CAS Google Scholar
- Tang, K. et al. The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore. Proc. Natl Acad. Sci. USA 112, 15880–15885 (2015).
Article CAS Google Scholar
- Harris, D., Bar-Zvi, S., Lahav, A., Goldshmid, I. & Adir, N. in Membrane Protein Complexes: Structure and Function Vol. 87 (eds Harris, J. R. & Boekema, E. J.) 57–82 (Springer Singapore, 2018).
- Rigort, A. et al. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl Acad. Sci. USA 109, 4449–4454 (2012).
Article CAS Google Scholar
- Schaffer, M. et al. Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J. Struct. Biol. 197, 73–82 (2017).
Article CAS Google Scholar
- Asano, S., Engel, B. D. & Baumeister, W. In situ cryo-electron tomography: a post-reductionist approach to structural biology. J. Mol. Biol. 428, 332–343 (2016).
Article CAS Google Scholar
- Kirchhoff, H. et al. Dynamic control of protein diffusion within the granal thylakoid lumen. Proc. Natl Acad. Sci. USA 108, 20248–20253 (2011).
Article CAS Google Scholar
- Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl Acad. Sci. USA 111, 15635–15640 (2014).
Article CAS Google Scholar
- Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261–271 (2009).
Article CAS Google Scholar
- Ortiz, J. O. et al. Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ. J. Cell Biol. 190, 613–621 (2010).
Article CAS Google Scholar
- Beckert, B. et al. Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization. EMBO J. 36, 2061 (2017).
Article CAS Google Scholar
- Beckert, B. et al. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Nat. Microbiol. 3, 1115–1121 (2018).
Article CAS Google Scholar
- Flygaard, R. K., Boegholm, N., Yusupov, M. & Jenner, L. B. Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism. Nat. Commun. 9, 4179 (2018).
Article Google Scholar
- Matzov, D. et al. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus. Nat. Commun. 8, 723 (2017).
Article Google Scholar
- Nevo, R. et al. Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J. 26, 1467–1473 (2007).
Article CAS Google Scholar
- Hinterstoisser, B., Cichna, M., Kuntner, O. & Peschek, G. A. Cooperation of plasma and thylakoid membranes for the biosynthesis of chlorophyll in cyanobacteria: the role of the thylakoid centers. J. Plant Physiol. 142, 407–413 (1993).
Article CAS Google Scholar
- Frain, K. M., Gangl, D., Jones, A., Zedler, J. A. Z. & Robinson, C. Protein translocation and thylakoid biogenesis in cyanobacteria. Biochim. Biophys. Acta 1857, 266–273 (2016).
Article CAS Google Scholar
- Zak, E. et al. The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc. Natl Acad. Sci. USA 98, 13443–13448 (2001).
Article CAS Google Scholar
- van de Meene, A. M. et al. Gross morphological changes in thylakoid membrane structure are associated with photosystem I deletion in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1818, 1427–1434 (2012).
Article Google Scholar
- Junglas, B. & Schneider, D. What is Vipp1 good for? Mol. Microbiol. 108, 1–5 (2018).
Article CAS Google Scholar
- Gutu, A., Chang, F. & O’Shea, E. K. Dynamical localization of a thylakoid membrane binding protein is required for acquisition of photosynthetic competency. Mol. Microbiol. 108, 16–31 (2018).
Article CAS Google Scholar
- Hennig, R. et al. IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat. Commun. 6, 7018 (2015).
Article CAS Google Scholar
- Saur, M. et al. A Janus-faced IM30 ring involved in thylakoid membrane fusion is assembled from IM30 tetramers. Structure 25, 1380–1390 (2017).
Article CAS Google Scholar
- Marx, A. & Adir, N. Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly. Biochim. Biophys. Acta 1827, 311–318 (2013).
Article CAS Google Scholar
- Glazer, A. N. Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem. 14, 47–77 (1985).
Article CAS Google Scholar
- Zhang, J. et al. Structure of phycobilisome from the red alga Griffithsia pacifica. Nature 551, 57–63 (2017).
Article Google Scholar
- Olive, J., Ajlani, G., Astier, C., Recouvreur, M. & Vernotte, C. Ultrastructure and light adaptation of phycobilisome mutants of Synechocystis PCC 6803. Biochimi. Biophys. Acta 1319, 275–282 (1997).
Article CAS Google Scholar
- Westermann, M., Neuschaefer-Rube, O., Morschel, E. & Wehrmeyer, W. Trimeric photosystem I complexes exist in vivo in thylakoid membranes of the Synechocystis strain B09201 and differ in absorption characteristics from monomeric photosystem I complexes. J. Plant Physiol. 155, 24–33 (1999).
Article CAS Google Scholar
- Giddings, T. H., Wasmann, C. & Staehelin, L. A. Structure of the thylakoids and envelope membranes of the cyanelles of cyanophora paradoxa. Plant Physiol. 71, 409–419 (1983).
Article CAS Google Scholar
- MacGregor-Chatwin, C. et al. Lateral segregation of photosystem I in cyanobacterial thylakoids. Plant Cell 29, 1119–1136 (2017).
Article CAS Google Scholar
- Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1–61 (1979).
Article Google Scholar
- Schaffer, M. et al. Cryo-focused ion beam sample preparation for imaging vitreous cells by cryo-electron tomography. Bio Protoc. 5, e1575 (2015).
PubMed PubMed Central Google Scholar
- Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
Article Google Scholar
- Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
Article CAS Google Scholar
- Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
Article CAS Google Scholar
- Xiong, Q., Morphew, M. K., Schwartz, C. L., Hoenger, A. H. & Mastronarde, D. N. CTF determination and correction for low dose tomographic tilt series. J. Struct. Biol. 168, 378–387 (2009).
Article Google Scholar
- Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).
Article Google Scholar
- Schur, F. K. et al. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353, 506–508 (2016).
Article CAS Google Scholar
- Hrabe, T. et al. PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178, 177–188 (2012).
Article CAS Google Scholar
- Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394 (2017).
Article CAS Google Scholar
- Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).
Article CAS Google Scholar
- Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).
Article CAS Google Scholar
- Villa, E. et al. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl Acad. Sci. USA 106, 1063–1068 (2009).
Article CAS Google Scholar
- Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).
Article CAS Google Scholar
- Chen, Y., Pfeffer, S., Hrabe, T., Schuller, J. M. & Forster, F. Fast and accurate reference-free alignment of subtomograms. J. Struct. Biol. 182, 235–245 (2013).
Article Google Scholar
- Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
Article CAS Google Scholar