Thomas, P. C. et al. Enceladus’s measured physical libration requires a global subsurface ocean. Icarus264, 37–47 (2016). ArticleADS Google Scholar
Čadek, O. et al. Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Lett.43, 5653–5660 (2016). ArticleADS Google Scholar
Beuthe, M., Rivoldini, A. & Trinh, A. Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophys. Res. Lett.43, 10088–10096 (2016). ArticleADS Google Scholar
Le Gall, A. et al. Thermally anomalous features in the subsurface of Enceladus’s south polar terrain. Nat. Astron1, 0063 (2017). Article Google Scholar
Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature459, 1098–1101 (2009). ArticleADS Google Scholar
Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature519, 207–210 (2015). ArticleADS Google Scholar
Sekine, Y. et al. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun6, 8604 (2015). Article Google Scholar
Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science356, 155–159 (2017). ArticleADS Google Scholar
Porco, C. C. et al. Cassini observes the active south pole of Enceladus. Science311, 1393–1401 (2006). ArticleADS Google Scholar
Spencer, J. R. et al. Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science311, 1401–1405 (2006). ArticleADS Google Scholar
Souček, O., Hron, J., Běhounková, M. & Čadek, O. Effect of the tiger stripes on the deformation of Saturn’s moon Enceladus. Geophys. Res. Lett.43, 7417–7423 (2016). ArticleADS Google Scholar
Běhounková, M., Souček, O., Hron, J. & Čadek, O. Plume activity and tidal deformation on Enceladus influenced by faults and variable ice shell thickness. Astrobiology17, 941–954 (2017). ADS Google Scholar
McKinnon, W. B. The shape of Enceladus as explained by an irregular core: implications for gravity, libration, and survival of its subsurface ocean. J. Geophys. Res.118, 1775–1788 (2013). Article Google Scholar
Monteux, J., Collins, G. S., Tobie, G. & Choblet, G. Consequences of large impacts on Enceladus’ core shape. Icarus.264, 300–310 (2016). ArticleADS Google Scholar
Neveu, M. & Rhoden, A. R. The origin and evolution of a differentiated Mimas. J. Geophys. Res.296, 183–196 (2015). Google Scholar
Travis, B. J. & Schubert, G. Keeping Enceladus warm. Icarus250, 32–42 (2015). ArticleADS Google Scholar
Rollins, K. M., Evans, M. D., Diehl, N. B. & Daily, W. D. Shear modulus and damping relationships for gravels. J. Geotech. Geoenviron. Eng124, 396–405 (1998). Article Google Scholar
Hedman, M. M. et al. An observed correlation between plume activity and tidal stresses on Enceladus. Nature500, 182–184 (2013). ArticleADS Google Scholar
Nimmo, F., Porco, C. C. & Mitchell, C. Tidally modulated eruptions on Enceladus: Cassini ISS observations and models. Astron. J.148, 46 (2014). ArticleADS Google Scholar
Běhounkovà, M. et al. Timing of water plume eruptions on Enceladus explained by interior viscosity structure. Nat. Geosci8, 601 (2015). ArticleADS Google Scholar
Monnereau, M. & Dubuffet, F. Is Io’s mantle really molten? Icarus158, 450–459 (2002). ArticleADS Google Scholar
Soderlund, K. M., Schmidt, B. E., Wicht, J. & Blankenship, D. D. Ocean-driven heating of Europa’s icy shell at low latitudes. Nat. Geosci7, 16–19 (2014). ArticleADS Google Scholar
Grannan, A. M., Favier, B., Le Bars, M. & Aurnou, J. M. Tidally forced turbulence in planetary interiors. Geophys. J. Int.208, 1690–1703 (2016). ADS Google Scholar
Lainey, V. et al. New constraints on Saturn’s interior from Cassini astrometric data. Icarus281, 286–296 (2017). ArticleADS Google Scholar
Fuller, J., Luan, J. & & Quataert, E. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astr. Soc.458, 3867–3879 (2016). ArticleADS Google Scholar
Postberg, F. et al. The E ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus193, 438–454 (2008). ArticleADS Google Scholar
Iess, L. et al. The gravity field and interior structure of Enceladus. Science344, 78–80 (2014). ArticleADS Google Scholar
McKinnon, W. B. Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Lett.42, 2137–2143 (2015). ArticleADS Google Scholar
Fountain, A. G. & Walder, J. S. Water flow through temperate glaciers. Rev. Geophys.36, 299–328 (1998). ArticleADS Google Scholar
Johnson, J. W., Oelkers, E. H. & Helgeson, H. C. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Chem. Geol.18, 899–947 (1992). Google Scholar
Johnson, J. W. & Norton, D. Critical phenomena in hydrothermal systems; state, thermodynamic, electrostatic, and transport properties of H2O in the critical region. Am. J. Sci.291, 541–648 (1991). ArticleADS Google Scholar
Ishibashi, I. & Zhang, X. Unified dynamic shear moduli and damping ratios of sand and clay. Soils Found.33, 182–191 (1993). Article Google Scholar
Fiscina, J. E. et al. Dissipation in quasistatically sheared wet and dry sand under confinement. Phys. Rev. E86, 020103 (2012). ArticleADS Google Scholar
Wulff, A. M., Hashida, T., Watanabe, K. & Takahashi, H. Attenuation behaviour of tuffaceous sandstone and granite during microfracturing. Geophys. J. Int.139, 395–409 (1999). ArticleADS Google Scholar
Brennan, A. J., Thusyanthan, N. I. & Madabhushi, S. P. Evaluation of shear modulus and damping in dynamic centrifuge tests. J. Geotech. Geoenviron. Eng131, 1488–1497 (2005). Article Google Scholar
Seed, H. B., Wong, R. T., Idriss, I. M. & Tokimatsu, K. Moduli and damping factors for dynamic analyses of cohesionless soils. J. Geotech. Geoenviron. Eng112, 1016–1032 (1986). Article Google Scholar
Segatz, M., Spohn, T., Ross, M. N. & Schubert, G. Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus75, 187–206 (1988). ArticleADS Google Scholar
Tobie, G., Mocquet, A. & Sotin, C. Tidal dissipation within large icy satellites: Appli- cations to Europa and Titan. Icarus177, 534–549 (2005). ArticleADS Google Scholar
Shibuya, S., Mitachi, T., Fukuda, F. & Degoshi, T. Strain rate effects on shear modulus and damping of normally consolidated clay. Geotech. Test. J.18, 365–375 (1995). Article Google Scholar
Sun, J. I., Golesorki, R. & Seed, H. B. Dynamic Moduli and Damping Ratios for Cohesive Soils. (Earthquake Engineering Research Center, Univ, California, Berkeley, 1988). Report no. UCB/EERC-88/15. Google Scholar
Araei, A. A., Razeghi, H. R., Tabatabaei, S. H. & Ghalandarzadeh, A. Loading fre- quency effect on stiffness, damping and cyclic strength of modeled rockfill materials. Soil Dyn. Earthq. Eng.33, 1–18 (2012). Article Google Scholar
Zhou, W., Chen, Y., Ma, G., Yang, L. & Chang, X. A modified dynamic shear modulus model for rockfill materials under a wide range of shear strain amplitudes. Soil Dyn. Earthq. Eng92, 229–238 (2017). Article Google Scholar
Wichtmann, T., Niemunis, A. & Triantafyllidis, T. Strain accumulation in sand due to cyclic loading: drained triaxial tests. Soil Dyn. Earthq. Eng25, 967–979 (2005). Article Google Scholar
Raad, L., Minassian, G. H. & Gartin, S. Characterization of saturated granular bases under repeated loads. Transp. Res. Rec.369, 73–82 (1992).
Faul, U. H. & Jackson, I. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett.234, 119–134 (2005). ArticleADS Google Scholar
Cole, D. M. A model for the anelastic straining of saline ice subjected to cyclic loading. Phil. Mag. A72, 231–248 (1995). ArticleADS Google Scholar
Castillo-Rogez, J. C., Efroimsky, M. & Lainey, V. The tidal history of Iapetus: spin dynamics in the light of a refined dissipation model. J. Geophys. Res.116, E09008 (2011). ArticleADS Google Scholar
Takeushi H., Saito M. in Methods in Computational Physics Vol. 1 (ed. Bolt, B. A.)217–295 (Academic, New York, 1972).
Saito, M. Some problems of static deformation of the Earth. J. Phys. Earth22, 123–140 (1974). Article Google Scholar
Ricard, Y. in Mantle Dynamics. Treatise on Geophysics Vol. 7 (ed. Schubert, G.) 23–71 (Elsevier, Amsterdam, The Netherlands, 2015).
Kalousová, K., Souček, O., Tobie, G., Choblet, G. & Čadek, O. Ice melting and down- ward transport of meltwater by two-phase flow in Europa’s ice shell. J. Geophys. Res.119, 532–549 (2014). Article Google Scholar
Palme, H. & O’Neill, H. S. C. in Mantle and Core. Treatise on Geochemistry Vol. 2 (ed. Carlson, R. W.) 1–38 (Elsevier, Amsterdam, The Netherlands, 2003).
Choblet, G. Modelling thermal convection with large viscosity gradients in one block of the cubed sphere. J. Comput. Phys.205, 269–291 (2005). ArticleADSMATH Google Scholar
Choblet, G., Čadek, O., Couturier, F. & Dumoulin, C. ŒDIPUS: a new tool to study the dynamics of planetary interiors. Geophys. J. Int170, 9–30 (2007). ArticleADS Google Scholar
Goodman, J. C., Collins, G. C., Marshall, J. & Pierrehumbert, R. T. Hydrothermal plume dynamics on Europa: implications for chaos formation. J. Geophys. Res.109, E03008 (2004). ArticleADS Google Scholar
Goodman, J. C. & Lenferink, E. Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds. Icarus221, 970–983 (2012). ArticleADS Google Scholar