Powering prolonged hydrothermal activity inside Enceladus (original) (raw)

References

  1. Thomas, P. C. et al. Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016).
    Article ADS Google Scholar
  2. Čadek, O. et al. Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Lett. 43, 5653–5660 (2016).
    Article ADS Google Scholar
  3. Beuthe, M., Rivoldini, A. & Trinh, A. Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophys. Res. Lett. 43, 10088–10096 (2016).
    Article ADS Google Scholar
  4. Le Gall, A. et al. Thermally anomalous features in the subsurface of Enceladus’s south polar terrain. Nat. Astron 1, 0063 (2017).
    Article Google Scholar
  5. Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).
    Article ADS Google Scholar
  6. Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).
    Article ADS Google Scholar
  7. Sekine, Y. et al. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun 6, 8604 (2015).
    Article Google Scholar
  8. Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).
    Article ADS Google Scholar
  9. Porco, C. C. et al. Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006).
    Article ADS Google Scholar
  10. Spencer, J. R. et al. Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311, 1401–1405 (2006).
    Article ADS Google Scholar
  11. Souček, O., Hron, J., Běhounková, M. & Čadek, O. Effect of the tiger stripes on the deformation of Saturn’s moon Enceladus. Geophys. Res. Lett. 43, 7417–7423 (2016).
    Article ADS Google Scholar
  12. Běhounková, M., Souček, O., Hron, J. & Čadek, O. Plume activity and tidal deformation on Enceladus influenced by faults and variable ice shell thickness. Astrobiology 17, 941–954 (2017).
    ADS Google Scholar
  13. McKinnon, W. B. The shape of Enceladus as explained by an irregular core: implications for gravity, libration, and survival of its subsurface ocean. J. Geophys. Res. 118, 1775–1788 (2013).
    Article Google Scholar
  14. Monteux, J., Collins, G. S., Tobie, G. & Choblet, G. Consequences of large impacts on Enceladus’ core shape. Icarus. 264, 300–310 (2016).
    Article ADS Google Scholar
  15. Neveu, M. & Rhoden, A. R. The origin and evolution of a differentiated Mimas. J. Geophys. Res. 296, 183–196 (2015).
    Google Scholar
  16. Travis, B. J. & Schubert, G. Keeping Enceladus warm. Icarus 250, 32–42 (2015).
    Article ADS Google Scholar
  17. Roberts, J. H. The fluffy core of Enceladus. Icarus 258, 54–66 (2015).
    Article ADS Google Scholar
  18. Rollins, K. M., Evans, M. D., Diehl, N. B. & Daily, W. D. Shear modulus and damping relationships for gravels. J. Geotech. Geoenviron. Eng 124, 396–405 (1998).
    Article Google Scholar
  19. Hedman, M. M. et al. An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500, 182–184 (2013).
    Article ADS Google Scholar
  20. Nimmo, F., Porco, C. C. & Mitchell, C. Tidally modulated eruptions on Enceladus: Cassini ISS observations and models. Astron. J. 148, 46 (2014).
    Article ADS Google Scholar
  21. Běhounkovà, M. et al. Timing of water plume eruptions on Enceladus explained by interior viscosity structure. Nat. Geosci 8, 601 (2015).
    Article ADS Google Scholar
  22. Monnereau, M. & Dubuffet, F. Is Io’s mantle really molten? Icarus 158, 450–459 (2002).
    Article ADS Google Scholar
  23. Soderlund, K. M., Schmidt, B. E., Wicht, J. & Blankenship, D. D. Ocean-driven heating of Europa’s icy shell at low latitudes. Nat. Geosci 7, 16–19 (2014).
    Article ADS Google Scholar
  24. Grannan, A. M., Favier, B., Le Bars, M. & Aurnou, J. M. Tidally forced turbulence in planetary interiors. Geophys. J. Int. 208, 1690–1703 (2016).
    ADS Google Scholar
  25. Lainey, V. et al. New constraints on Saturn’s interior from Cassini astrometric data. Icarus 281, 286–296 (2017).
    Article ADS Google Scholar
  26. Fuller, J., Luan, J. & & Quataert, E. Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon. Not. R. Astr. Soc. 458, 3867–3879 (2016).
    Article ADS Google Scholar
  27. Postberg, F. et al. The E ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193, 438–454 (2008).
    Article ADS Google Scholar
  28. Iess, L. et al. The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014).
    Article ADS Google Scholar
  29. McKinnon, W. B. Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Lett. 42, 2137–2143 (2015).
    Article ADS Google Scholar
  30. Fountain, A. G. & Walder, J. S. Water flow through temperate glaciers. Rev. Geophys. 36, 299–328 (1998).
    Article ADS Google Scholar
  31. Johnson, J. W., Oelkers, E. H. & Helgeson, H. C. SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Chem. Geol. 18, 899–947 (1992).
    Google Scholar
  32. Johnson, J. W. & Norton, D. Critical phenomena in hydrothermal systems; state, thermodynamic, electrostatic, and transport properties of H2O in the critical region. Am. J. Sci. 291, 541–648 (1991).
    Article ADS Google Scholar
  33. Ishibashi, I. & Zhang, X. Unified dynamic shear moduli and damping ratios of sand and clay. Soils Found. 33, 182–191 (1993).
    Article Google Scholar
  34. Fiscina, J. E. et al. Dissipation in quasistatically sheared wet and dry sand under confinement. Phys. Rev. E 86, 020103 (2012).
    Article ADS Google Scholar
  35. Wulff, A. M., Hashida, T., Watanabe, K. & Takahashi, H. Attenuation behaviour of tuffaceous sandstone and granite during microfracturing. Geophys. J. Int. 139, 395–409 (1999).
    Article ADS Google Scholar
  36. Brennan, A. J., Thusyanthan, N. I. & Madabhushi, S. P. Evaluation of shear modulus and damping in dynamic centrifuge tests. J. Geotech. Geoenviron. Eng 131, 1488–1497 (2005).
    Article Google Scholar
  37. Seed, H. B., Wong, R. T., Idriss, I. M. & Tokimatsu, K. Moduli and damping factors for dynamic analyses of cohesionless soils. J. Geotech. Geoenviron. Eng 112, 1016–1032 (1986).
    Article Google Scholar
  38. Segatz, M., Spohn, T., Ross, M. N. & Schubert, G. Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus 75, 187–206 (1988).
    Article ADS Google Scholar
  39. Tobie, G., Mocquet, A. & Sotin, C. Tidal dissipation within large icy satellites: Appli- cations to Europa and Titan. Icarus 177, 534–549 (2005).
    Article ADS Google Scholar
  40. Shibuya, S., Mitachi, T., Fukuda, F. & Degoshi, T. Strain rate effects on shear modulus and damping of normally consolidated clay. Geotech. Test. J. 18, 365–375 (1995).
    Article Google Scholar
  41. Sun, J. I., Golesorki, R. & Seed, H. B. Dynamic Moduli and Damping Ratios for Cohesive Soils. (Earthquake Engineering Research Center, Univ, California, Berkeley, 1988). Report no. UCB/EERC-88/15.
    Google Scholar
  42. Araei, A. A., Razeghi, H. R., Tabatabaei, S. H. & Ghalandarzadeh, A. Loading fre- quency effect on stiffness, damping and cyclic strength of modeled rockfill materials. Soil Dyn. Earthq. Eng. 33, 1–18 (2012).
    Article Google Scholar
  43. Zhou, W., Chen, Y., Ma, G., Yang, L. & Chang, X. A modified dynamic shear modulus model for rockfill materials under a wide range of shear strain amplitudes. Soil Dyn. Earthq. Eng 92, 229–238 (2017).
    Article Google Scholar
  44. Wichtmann, T., Niemunis, A. & Triantafyllidis, T. Strain accumulation in sand due to cyclic loading: drained triaxial tests. Soil Dyn. Earthq. Eng 25, 967–979 (2005).
    Article Google Scholar
  45. Raad, L., Minassian, G. H. & Gartin, S. Characterization of saturated granular bases under repeated loads. Transp. Res. Rec. 369, 73–82 (1992).
  46. Faul, U. H. & Jackson, I. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett. 234, 119–134 (2005).
    Article ADS Google Scholar
  47. Cole, D. M. A model for the anelastic straining of saline ice subjected to cyclic loading. Phil. Mag. A 72, 231–248 (1995).
    Article ADS Google Scholar
  48. Castillo-Rogez, J. C., Efroimsky, M. & Lainey, V. The tidal history of Iapetus: spin dynamics in the light of a refined dissipation model. J. Geophys. Res. 116, E09008 (2011).
    Article ADS Google Scholar
  49. Takeushi H., Saito M. in Methods in Computational Physics Vol. 1 (ed. Bolt, B. A.)217–295 (Academic, New York, 1972).
  50. Saito, M. Some problems of static deformation of the Earth. J. Phys. Earth 22, 123–140 (1974).
    Article Google Scholar
  51. Ricard, Y. in Mantle Dynamics. Treatise on Geophysics Vol. 7 (ed. Schubert, G.) 23–71 (Elsevier, Amsterdam, The Netherlands, 2015).
  52. Kalousová, K., Souček, O., Tobie, G., Choblet, G. & Čadek, O. Ice melting and down- ward transport of meltwater by two-phase flow in Europa’s ice shell. J. Geophys. Res. 119, 532–549 (2014).
    Article Google Scholar
  53. Palme, H. & O’Neill, H. S. C. in Mantle and Core. Treatise on Geochemistry Vol. 2 (ed. Carlson, R. W.) 1–38 (Elsevier, Amsterdam, The Netherlands, 2003).
  54. Choblet, G. Modelling thermal convection with large viscosity gradients in one block of the cubed sphere. J. Comput. Phys. 205, 269–291 (2005).
    Article ADS MATH Google Scholar
  55. Choblet, G., Čadek, O., Couturier, F. & Dumoulin, C. ŒDIPUS: a new tool to study the dynamics of planetary interiors. Geophys. J. Int 170, 9–30 (2007).
    Article ADS Google Scholar
  56. Goodman, J. C., Collins, G. C., Marshall, J. & Pierrehumbert, R. T. Hydrothermal plume dynamics on Europa: implications for chaos formation. J. Geophys. Res. 109, E03008 (2004).
    Article ADS Google Scholar
  57. Goodman, J. C. & Lenferink, E. Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds. Icarus 221, 970–983 (2012).
    Article ADS Google Scholar

Download references