Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan (original) (raw)

References

  1. Hahn, J. M. & Malhotra, R. Neptune’s migration into a stirred-up Kuiper belt: a detailed comparison of simulations to observations. Astron. J. 130, 2392–2414 (2005).
    Article ADS Google Scholar
  2. Levison, H. F., Morbidelli, A., Van Laerhoven, C., Gomes, R. & Tsiganis, K. Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196, 258–273 (2008).
    Article ADS Google Scholar
  3. Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).
    Article ADS Google Scholar
  4. Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012).
    Article ADS Google Scholar
  5. Agnor, C. B. & Lin, D. N. C. On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J. 745, 143 (2012).
    Article ADS Google Scholar
  6. Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F. & Tsiganis, K. Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010).
    Article ADS Google Scholar
  7. Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).
    Article ADS Google Scholar
  8. Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012).
    Article ADS Google Scholar
  9. Merline, W. J. et al. S/2001 (617) 1. Int. J. Astron. Union Circ. 7741, 2 (2001).
    ADS Google Scholar
  10. Goldreich, P., Lithwick, Y. & Sari, R. Formation of Kuiper-belt binaries by dynamical friction and three-body encounters. Nature 420, 643–646 (2002).
    Article ADS Google Scholar
  11. Nesvorný, D., Youdin, A. N. & Richardson, D. C. Formation of Kuiper belt binaries by gravitational collapse. Astron. J. 140, 785–793 (2010).
    Article ADS Google Scholar
  12. Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005).
    Article ADS Google Scholar
  13. Nesvorný, D., Vokrouhlický, D. & Morbidelli, A. Capture of Trojans by jumping Jupiter. Astrophys. J. 768, 45 (2013).
    Article ADS Google Scholar
  14. Emery, J. P., Marzari, F., Morbidelli, A., French, L. M. & Grav, T. in Asteroids IV 203–220 (Univ. Arizona Press, Tucson, 2015).
    Google Scholar
  15. Fraser, W. C., Brown, M. E., Morbidelli, A., Parker, A. & Batygin, K. The absolute magnitude distribution of Kuiper belt objects. Astrophys. J. 782, 100 (2014).
    Article ADS Google Scholar
  16. Grav, T. et al. WISE/NEOWISE observations of the Jovian Trojans: preliminary results. Astrophys. J. 742, 40 (2011).
    Article ADS Google Scholar
  17. Buie, M. W. et al. Size and shape from stellar occultation observations of the double Jupiter Trojan Patroclus and Menoetius. Astron. J. 149, 113 (2015).
    Article ADS Google Scholar
  18. Parker, A. H. & Kavelaars, J. J. Destruction of binary minor planets during Neptune scattering. Astrophys. J. 722, L204–L208 (2010).
    Article ADS Google Scholar
  19. Mueller, M. et al. Eclipsing binary Trojan asteroid Patroclus: thermal inertia from Spitzer observations. Icarus 205, 505–515 (2010).
    Article ADS Google Scholar
  20. Agnor, C. B. & Hamilton, D. P. Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441, 192–194 (2006).
    Article ADS Google Scholar
  21. Marchis, F. et al. The puzzling mutual orbit of the binary Trojan asteroid (624) Hektor. Astrophys. J. 783, L37 (2014).
    Article ADS Google Scholar
  22. Sonnett, S., Mainzer, A., Grav, T., Masiero, J. & Bauer, J. Binary candidates in the Jovian Trojan and Hilda populations from NEOWISE light curves. Astrophys. J. 799, 191 (2015).
    Article ADS Google Scholar
  23. Noll, K. S., Grundy, W. M., Chiang, E. I., Margot, J.-L. & Kern, S. D. in The Solar System Beyond Neptune 345–363 (Univ. Arizona Press, Tucson, 2008).
  24. Nesvorný, D. Evidence for slow migration of Neptune from the inclination distribution of Kuiper belt objects. Astron. J. 150, 73 (2015).
    Article ADS Google Scholar
  25. Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).
    Article ADS Google Scholar
  26. Wong, I. & Brown, M. E. The color-magnitude distribution of small Jupiter Trojans. Astron. J. 150, 174 (2015).
    Article ADS Google Scholar
  27. Kaib, N. A. & Chambers, J. E. The fragility of the terrestrial planets during a giant-planet instability. Mon. Not. R. Astron. Soc. 455, 3561–3569 (2016).
    Article ADS Google Scholar
  28. Nesvorný, D., Roig, F. & Bottke, W. F. Modeling the historical flux of planetary impactors. Astron. J. 153, 103 (2017).
    Article ADS Google Scholar
  29. Bottke, W. F., Levison, H. F., Nesvorný, D. & Dones, L. Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190, 203–223 (2007).
    Article ADS Google Scholar
  30. Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).
    Article ADS Google Scholar
  31. Gomes, R. S., Morbidelli, A. & Levison, H. F. Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus 170, 492–507 (2004).
    Article ADS Google Scholar
  32. Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).
    Article ADS Google Scholar
  33. Nesvorný, D., Parker, J. & Vokrouhlický, D. Bi-lobed shape of Comet 67P from a collapsed binary. Astron. J. 155, 246 (2018).
    Article ADS Google Scholar
  34. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in FORTRAN. The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 1992).
  35. Petit, J.-M. & Mousis, O. KBO binaries: how numerous were they? Icarus 168, 409–419 (2004).
    Article ADS Google Scholar
  36. Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).
    Article ADS Google Scholar
  37. Nesvorný, D., Vokrouhlický, D., Bottke, W. F., Noll, K. & Levison, H. F. Observed binary fraction sets limits on the extent of collisional grinding in the Kuiper belt. Astron. J. 141, 159 (2011).
    Article ADS Google Scholar
  38. Durda, D. D. et al. Size–frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: comparison with observed asteroid families. Icarus 186, 498–516 (2007).
    Article ADS Google Scholar
  39. Leinhardt, Z. M. & Stewart, S. T. Full numerical simulations of catastrophic small body collisions. Icarus 199, 542–559 (2009).
    Article ADS Google Scholar
  40. Jutzi, M., Michel, P., Benz, W. & Richardson, D. C. Fragment properties at the catastrophic disruption threshold: the effect of the parent body’s internal structure. Icarus 207, 54–65 (2010).
    Article ADS Google Scholar
  41. Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011).
    Article ADS Google Scholar
  42. Morbidelli, A. & Rickman, H. Comets as collisional fragments of a primordial planetesimal disk. Astron. Astrophys. 583, A43 (2015).
    Article ADS Google Scholar
  43. Wetherill, G. W. Collisions in the asteroid belt. J. Geophys. Res. 72, 2429 (1967).
    Article ADS Google Scholar
  44. Greenberg, R. Orbital interactions—a new geometrical formalism. Astron. J. 87, 184–195 (1982).
    Article ADS Google Scholar
  45. Davis, D. R., Durda, D. D., Marzari, F., Campo Bagatin, A. & Gil-Hutton, R. in Asteroids III 545–558 (Univ. Arizona Press, Tucson, 2002).
  46. Dell’Oro, A. & Cellino, A. The random walk of Main Belt asteroids: orbital mobility by non-destructive collisions. Mon. Not. R. Astron. Soc. 380, 399–416 (2007).
    Article ADS Google Scholar

Download references