Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan (original) (raw)
References
Hahn, J. M. & Malhotra, R. Neptune’s migration into a stirred-up Kuiper belt: a detailed comparison of simulations to observations. Astron. J.130, 2392–2414 (2005). ArticleADS Google Scholar
Levison, H. F., Morbidelli, A., Van Laerhoven, C., Gomes, R. & Tsiganis, K. Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus196, 258–273 (2008). ArticleADS Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature435, 459–461 (2005). ArticleADS Google Scholar
Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J.144, 117 (2012). ArticleADS Google Scholar
Agnor, C. B. & Lin, D. N. C. On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J.745, 143 (2012). ArticleADS Google Scholar
Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F. & Tsiganis, K. Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J.140, 1391–1401 (2010). ArticleADS Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature435, 466–469 (2005). ArticleADS Google Scholar
Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature485, 78–81 (2012). ArticleADS Google Scholar
Merline, W. J. et al. S/2001 (617) 1. Int. J. Astron. Union Circ.7741, 2 (2001). ADS Google Scholar
Goldreich, P., Lithwick, Y. & Sari, R. Formation of Kuiper-belt binaries by dynamical friction and three-body encounters. Nature420, 643–646 (2002). ArticleADS Google Scholar
Nesvorný, D., Youdin, A. N. & Richardson, D. C. Formation of Kuiper belt binaries by gravitational collapse. Astron. J.140, 785–793 (2010). ArticleADS Google Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K. & Gomes, R. Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature435, 462–465 (2005). ArticleADS Google Scholar
Nesvorný, D., Vokrouhlický, D. & Morbidelli, A. Capture of Trojans by jumping Jupiter. Astrophys. J.768, 45 (2013). ArticleADS Google Scholar
Emery, J. P., Marzari, F., Morbidelli, A., French, L. M. & Grav, T. in Asteroids IV 203–220 (Univ. Arizona Press, Tucson, 2015). Google Scholar
Fraser, W. C., Brown, M. E., Morbidelli, A., Parker, A. & Batygin, K. The absolute magnitude distribution of Kuiper belt objects. Astrophys. J.782, 100 (2014). ArticleADS Google Scholar
Grav, T. et al. WISE/NEOWISE observations of the Jovian Trojans: preliminary results. Astrophys. J.742, 40 (2011). ArticleADS Google Scholar
Buie, M. W. et al. Size and shape from stellar occultation observations of the double Jupiter Trojan Patroclus and Menoetius. Astron. J.149, 113 (2015). ArticleADS Google Scholar
Parker, A. H. & Kavelaars, J. J. Destruction of binary minor planets during Neptune scattering. Astrophys. J.722, L204–L208 (2010). ArticleADS Google Scholar
Mueller, M. et al. Eclipsing binary Trojan asteroid Patroclus: thermal inertia from Spitzer observations. Icarus205, 505–515 (2010). ArticleADS Google Scholar
Agnor, C. B. & Hamilton, D. P. Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature441, 192–194 (2006). ArticleADS Google Scholar
Marchis, F. et al. The puzzling mutual orbit of the binary Trojan asteroid (624) Hektor. Astrophys. J.783, L37 (2014). ArticleADS Google Scholar
Sonnett, S., Mainzer, A., Grav, T., Masiero, J. & Bauer, J. Binary candidates in the Jovian Trojan and Hilda populations from NEOWISE light curves. Astrophys. J.799, 191 (2015). ArticleADS Google Scholar
Noll, K. S., Grundy, W. M., Chiang, E. I., Margot, J.-L. & Kern, S. D. in The Solar System Beyond Neptune 345–363 (Univ. Arizona Press, Tucson, 2008).
Nesvorný, D. Evidence for slow migration of Neptune from the inclination distribution of Kuiper belt objects. Astron. J.150, 73 (2015). ArticleADS Google Scholar
Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus142, 5–20 (1999). ArticleADS Google Scholar
Wong, I. & Brown, M. E. The color-magnitude distribution of small Jupiter Trojans. Astron. J.150, 174 (2015). ArticleADS Google Scholar
Kaib, N. A. & Chambers, J. E. The fragility of the terrestrial planets during a giant-planet instability. Mon. Not. R. Astron. Soc.455, 3561–3569 (2016). ArticleADS Google Scholar
Nesvorný, D., Roig, F. & Bottke, W. F. Modeling the historical flux of planetary impactors. Astron. J.153, 103 (2017). ArticleADS Google Scholar
Bottke, W. F., Levison, H. F., Nesvorný, D. & Dones, L. Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus190, 203–223 (2007). ArticleADS Google Scholar
Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus305, 262–276 (2018). ArticleADS Google Scholar
Gomes, R. S., Morbidelli, A. & Levison, H. F. Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus170, 492–507 (2004). ArticleADS Google Scholar
Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus108, 18–36 (1994). ArticleADS Google Scholar
Nesvorný, D., Parker, J. & Vokrouhlický, D. Bi-lobed shape of Comet 67P from a collapsed binary. Astron. J.155, 246 (2018). ArticleADS Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in FORTRAN. The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 1992).
Petit, J.-M. & Mousis, O. KBO binaries: how numerous were they? Icarus168, 409–419 (2004). ArticleADS Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus204, 558–573 (2009). ArticleADS Google Scholar
Nesvorný, D., Vokrouhlický, D., Bottke, W. F., Noll, K. & Levison, H. F. Observed binary fraction sets limits on the extent of collisional grinding in the Kuiper belt. Astron. J.141, 159 (2011). ArticleADS Google Scholar
Durda, D. D. et al. Size–frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: comparison with observed asteroid families. Icarus186, 498–516 (2007). ArticleADS Google Scholar
Leinhardt, Z. M. & Stewart, S. T. Full numerical simulations of catastrophic small body collisions. Icarus199, 542–559 (2009). ArticleADS Google Scholar
Jutzi, M., Michel, P., Benz, W. & Richardson, D. C. Fragment properties at the catastrophic disruption threshold: the effect of the parent body’s internal structure. Icarus207, 54–65 (2010). ArticleADS Google Scholar
Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J.142, 152 (2011). ArticleADS Google Scholar
Morbidelli, A. & Rickman, H. Comets as collisional fragments of a primordial planetesimal disk. Astron. Astrophys.583, A43 (2015). ArticleADS Google Scholar
Wetherill, G. W. Collisions in the asteroid belt. J. Geophys. Res.72, 2429 (1967). ArticleADS Google Scholar
Greenberg, R. Orbital interactions—a new geometrical formalism. Astron. J.87, 184–195 (1982). ArticleADS Google Scholar
Davis, D. R., Durda, D. D., Marzari, F., Campo Bagatin, A. & Gil-Hutton, R. in Asteroids III 545–558 (Univ. Arizona Press, Tucson, 2002).
Dell’Oro, A. & Cellino, A. The random walk of Main Belt asteroids: orbital mobility by non-destructive collisions. Mon. Not. R. Astron. Soc.380, 399–416 (2007). ArticleADS Google Scholar