A viscoelastic adhesive epicardial patch for treating myocardial infarction (original) (raw)
Rane, A. A. & Christman, K. L. Biomaterials for the treatment of myocardial infarction: a 5-year update. J. Am. Coll. Cardiol.58, 2615–2629 (2011). ArticleCAS Google Scholar
Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature473, 326–335 (2011). ArticleCAS Google Scholar
Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature525, 479–485 (2015). ArticleCAS Google Scholar
Shadrin, I. Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun.8, 1825 (2017). Article Google Scholar
Fujimoto, K. L. et al. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J. Am. Coll. Cardiol.49, 2292–2300 (2007). ArticleCAS Google Scholar
Didie, M. et al. Parthenogenetic stem cells for tissue-engineered heart repair. J. Clin. Invest.123, 1285–1298 (2013). ArticleCAS Google Scholar
Liao, S.-Y. et al. Attenuation of left ventricular adverse remodeling with epicardial patching after myocardial infarction. J. Card. Fail.16, 590–598 (2010). Article Google Scholar
Stuckey, D. J. et al. Magnetic resonance imaging evaluation of remodeling by cardiac elastomeric tissue scaffold biomaterials in a rat model of myocardial infarction. Tissue Eng. Part A16, 3395–3402 (2010). ArticleCAS Google Scholar
Fujimoto, K. L. et al. Placement of an elastic biodegradable cardiac patch on a subacute infarcted heart leads to cellularization with early developmental cardiomyocyte characteristics. J. Card. Fail.18, 585–595 (2012). Article Google Scholar
Chi, N.-H., Yang, M.-C., Chung, T.-W., Chou, N.-K. & Wang, S.-S. Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydr. Polym.92, 591–597 (2013). ArticleCAS Google Scholar
Serpooshan, V. et al. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials34, 9048–9055 (2013). ArticleCAS Google Scholar
Vilaeti, A. D. et al. Short-term ventricular restraint attenuates post-infarction remodeling in rats. Int. J. Cardiol.165, 278–284 (2013). Article Google Scholar
D’Amore, A. et al. Bi-layered polyurethane—extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials107, 1–14 (2016). Article Google Scholar
Moainie, S. L. et al. Infarct restraint attenuates remodeling and reduces chronic ischemic mitral regurgitation after postero-lateral infarction. Ann. Thorac. Surg.74, 444–449 (2002). Article Google Scholar
Fomovsky, G. M., Clark, S. A., Parker, K. M., Ailawadi, G. & Holmes, J. W. Anisotropic reinforcement of acute anteroapical infarcts improves pump function. Circ. Heart Fail.5, 515–522 (2012). Article Google Scholar
Enomoto, Y. et al. Early ventricular restraint after myocardial infarction: extent of the wrap determines the outcome of remodeling. Ann. Thorac. Surg.79, 881–887 (2005). Article Google Scholar
Clarke, S. A., Ghanta, R. K., Ailawadi, G. & Holmes, J. W. in Cardiovascular and Cardiac Therapeutic Devices (ed. Franz, T.) 169–206 (Springer Berlin Heidelberg, 2014).
Clarke, S. A., Goodman, N. C., Ailawadi, G. & Holmes, J. W. Effect of scar compaction on the therapeutic efficacy of anisotropic reinforcement following myocardial infarction in the dog. J. Cardiovasc. Transl. Res.8, 353–361 (2015). Article Google Scholar
Piao, H. et al. Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials28, 641–649 (2007). ArticleCAS Google Scholar
Sarig, U. et al. Natural myocardial ECM patch drives cardiac progenitor based restoration even after scarring. Acta Biomater.44, 209–220 (2016). ArticleCAS Google Scholar
Gu, X. et al. Sustained viral gene delivery from a micro-fibrous, elastomeric cardiac patch to the ischemic rat heart. Biomaterials133, 132–143 (2017). ArticleCAS Google Scholar
Mazza, E. & Ehret, A. E. Mechanical biocompatibility of highly deformable biomedical materials. J. Mech. Behav. Biomed. Mater.48, 100–124 (2015). ArticleCAS Google Scholar
Winter, H. H. & Chambon, F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol.30, 367–382 (1986). ArticleCAS Google Scholar
Chambon, F. & Winter, H. H. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J. Rheol.31, 683–697 (1987). ArticleCAS Google Scholar
Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science356, eaaf3627 (2017). Article Google Scholar
Yuk, H., Zhang, T., Lin, S., Parada, G. A. & Zhao, X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater.15, 190–196 (2016). ArticleCAS Google Scholar
Oz, M. C. et al. Global surgical experience with the acorn cardiac support device. J. Thorac. Cardiov. Sur.126, 983–991 (2003). Article Google Scholar
Ghanta, R. K. et al. Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure. Circulation115, 1201–1210 (2007). Article Google Scholar
Omens, J. H., Mackenna, D. A. & Mcculloch, A. D. Measurement of strain and analysis of stress in resting rat left-ventricular myocardium. J. Biomech.26, 665–676 (1993). ArticleCAS Google Scholar
Lin, Y. D. et al. A nanopatterned cell-seeded cardiac patch prevents electro-uncoupling and improves the therapeutic efficacy of cardiac repair. Biomater. Sci.2, 567–580 (2014). ArticleCAS Google Scholar
Kutschka, I. et al. Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation114, I167–I173 (2006). PubMed Google Scholar
Simpson, D., Liu, H., Fan, T. H., Nerem, R. & Dudley, S. C. Jr. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells25, 2350–2357 (2007). Article Google Scholar
Liang, S. et al. Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches. Adv. Mater.30, e1704235 (2018). Article Google Scholar
Efraim, Y. et al. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction. Acta Biomater.50, 220–233 (2017). ArticleCAS Google Scholar
Ravi, S. et al. Effect of bone marrow-derived extracellular matrix on cardiac function after ischemic injury. Biomaterials33, 7736–7745 (2012). ArticleCAS Google Scholar
Jin, J. et al. Transplantation of mesenchymal stem cells within a poly(lactide-_co_-ɛ-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur. J. Heart Fail.11, 147–153 (2009). ArticleCAS Google Scholar
Giraud, M.-N. et al. Hydrogel-based engineered skeletal muscle grafts normalize heart function early after myocardial infarction. Artif. Organs32, 692–700 (2008). ArticleCAS Google Scholar
Siepe, M. et al. Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J. Thorac. Cardiovasc. Sur.132, 124–131 (2006). Article Google Scholar
Hashizume, R. et al. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy. Biomaterials34, 7353–7363 (2013). ArticleCAS Google Scholar
Mewhort, H. E. M. et al. Bioactive extracellular matrix scaffold promotes adaptive cardiac remodeling and repair. JACC Basic Transl. Sci.2, 450–464 (2017). Article Google Scholar
Singelyn, J. M. et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J. Am. Coll. Cardiol.59, 751–763 (2012). ArticleCAS Google Scholar
Dai, W. et al. Intramyocardial injection of heart tissue-derived extracellular matrix improves postinfarction cardiac function in rats. J. Cardiovasc. Pharmacol. Ther.18, 270–279 (2013). Article Google Scholar
Hassaballah, A. I., Hassan, M. A., Mardi, A. N. & Hamdi, M. An inverse finite element method for determining the tissue compressibility of human left ventricular wall during the cardiac cycle. PLoS ONE8, e82703 (2013). Article Google Scholar
Wang, H. M. et al. Structure-based finite strain modelling of the human left ventricle in diastole. Int. J. Numer. Meth. Bio.29, 83–103 (2013). Article Google Scholar
Eriksson, T. S. E., Prassl, A. J., Plank, G. & Holzapfel, G. A. Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids18, 592–606 (2013). Article Google Scholar
Gao, H., Carrick, D., Berry, C., Griffith, B. E. & Luo, X. Y. Dynamic finite-strain modelling of the human left ventricle in health and disease using an immersed boundary-finite element method. IMA J. Appl. Math.79, 978–1010 (2014). Article Google Scholar
Hall, J. E. Guyton and Hall Textbook of Medical Physiology (Elsevier Health Sciences, 2015).
Mielniczuk, L. M. et al. Left ventricular end-diastolic pressure and risk of subsequent heart failure in patients following an acute myocardial infarction. Congest. Heart Fail.13, 209–214 (2007). Article Google Scholar
Holzapfel, G. A. & Ogden, R. W. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil. Trans. R. Soc. A367, 3445–3475 (2009). Article Google Scholar
Guccione, J. M. & Mcculloch, A. D. Mechanics of active contraction in cardiac-muscle. 1. Constitutive relations for fiber stress that describe deactivation. J. Biomech. Eng. Trans. ASME115, 72–81 (1993). ArticleCAS Google Scholar
Guccione, J. M., Waldman, L. K. & Mcculloch, A. D. Mechanics of active contraction in cardiac-muscle. 2. Cylindrical models of the systolic left-ventricle. J. Biomech. Eng. Trans. ASME115, 82–90 (1993). ArticleCAS Google Scholar
Rodriguez, E. K., Omens, J. H., Waldman, L. K. & Mcculloch, A. D. Effect of residual stress on transmural sarcomere length distributions in rat left ventricle. Am. J. Physiol.264, H1048–H1056 (1993). CASPubMed Google Scholar
Walker, J. C. et al. Magnetic resonance imaging-based finite element stress analysis after linear repair of left ventricular aneurysm. J. Thorac. Cardiov. Sur.135, 1094–1102 (2008). Article Google Scholar
Goktepe, S., Abilez, O. J. & Kuhl, E. A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J. Mech. Phys. Solids58, 1661–1680 (2010). Article Google Scholar
Himpel, G., Kuhl, E., Menzel, A. & Steinmann, P. Computational modelling of isotropic multiplicative growth. CMES Comp. Model. Eng. Sci.8, 119–134 (2005). Google Scholar
Genet, M., Lee, L. C., Baillargeon, B., Guccione, J. M. & Kuhl, E. Modeling pathologies of diastolic and systolic heart failure. Ann. Biomed. Eng.44, 112–127 (2016). ArticleCAS Google Scholar
Puso, M. A. & Weiss, J. A. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. J. Biomech. Eng. Trans. ASME120, 62–70 (1998). ArticleCAS Google Scholar
Maas, S. A., Ellis, B. J., Ateshian, G. A. & Weiss, J. A. FEBio: finite elements for biomechanics. J. Biomech. Eng. Trans. ASME134, 011005 (2012). Article Google Scholar
Tsai, J. Z. et al. In-vivo measurement of swine myocardial resistivity. IEEE Trans. Biomed. Eng.49, 472–483 (2002). Article Google Scholar
Gabriel, C., Peyman, A. & Grant, E. H. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol.54, 4863–4878 (2009). ArticleCAS Google Scholar
Li, J. et al. Tough adhesives for diverse wet surfaces. Science357, 378–381 (2017). ArticleCAS Google Scholar
Mehdizadeh, M., Weng, H., Gyawali, D., Tang, L. P. & Yang, J. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials33, 7972–7983 (2012). ArticleCAS Google Scholar
Guo, J. S. et al. Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials112, 275–286 (2017). ArticleCAS Google Scholar
Jeon, E. Y. et al. Rapidly light-activated surgical protein glue inspired by mussel adhesion and insect structural crosslinking. Biomaterials67, 11–19 (2015). ArticleCAS Google Scholar