Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic (original) (raw)

References

  1. McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).
    Google Scholar
  2. Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374 (2013).
    CAS Google Scholar
  3. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
    CAS Google Scholar
  4. Juncher Jørgensen, C., Lund Johansen, K. M., Westergaard-Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 8, 20–23 (2015).
    Google Scholar
  5. Lau, M. C. Y. et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891 (2015).
    CAS Google Scholar
  6. D’Imperio, L., Nielsen, C. S., Westergaard-Nielsen, A., Michelsen, A. & Elberling, B. Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape-integrated CH4 budget. Glob. Chang. Biol. 23, 966–976 (2017).
    Google Scholar
  7. Emmerton, C. A. et al. The net exchange of methane with high Arctic landscapes during the summer growing season. Biogeosciences 11, 3095–3106 (2014).
    Google Scholar
  8. Oh, Y. et al. A scalable model for methane consumption in arctic mineral soils. Geophys. Res. Lett. 43, 5143–5150 (2016).
    CAS Google Scholar
  9. Zhuang, Q. et al. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochem. Cy. 18, GB3010 (2004).
    Google Scholar
  10. Zhuang, Q. et al. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition. Global Biogeochem. Cy. 27, 650–663 (2013).
    CAS Google Scholar
  11. Bruhwiler, L. et al. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 14, 8269–8293 (2014).
    Google Scholar
  12. Saunois, M. et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 8, 697–751 (2016).
    Google Scholar
  13. Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S. & Frankenberg, C. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 327, 322–325 (2010).
    CAS Google Scholar
  14. Bohn, T. J. et al. WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences 12, 3321–3349 (2015).
    Google Scholar
  15. Miller, S. M. et al. A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations. Global Biogeochem. Cy. 30, 1441–1453 (2016).
    CAS Google Scholar
  16. Hugelius, G. et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 5, 393–402 (2013).
    Google Scholar
  17. Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).
    CAS Google Scholar
  18. Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).
  19. Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Change 4, 903–906 (2014).
    CAS Google Scholar
  20. Trimmer, M. et al. Riverbed methanotrophy sustained by high carbon conversion efficiency. ISME J. 9, 2304–2314 (2015).
    CAS Google Scholar
  21. Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).
    CAS Google Scholar
  22. Christiansen, J. R. et al. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry 122, 15–33 (2015).
    CAS Google Scholar
  23. Baani, M. & Liesack, W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc. Natl Acad. Sci. USA 105, 10203–10208 (2008).
    CAS Google Scholar
  24. Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl Acad. Sci. USA 116, 8515–8524 (2019).
    CAS Google Scholar
  25. Segers, R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23–51 (1998).
    CAS Google Scholar
  26. Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).
    CAS Google Scholar
  27. Von Stockar, U. & Liu, J. S. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim. Biophys. Acta Bioenerg. 1412, 191–211 (1999).
    Google Scholar
  28. Tijhuis, L., Van Loosdrecht, M. C. M. & Heijnen, J. J. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol. Bioeng. 42, 509–519 (1993).
    CAS Google Scholar
  29. Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L. & Pfeiffer, E. Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. J. Geophys. Res. Biogeosci. 120, 2525–2541 (2015).
    CAS Google Scholar
  30. Throckmorton, H. M. et al. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes. Hydrol. Process. 30, 4972–4986 (2016).
    Google Scholar
  31. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar
  32. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
    CAS Google Scholar
  33. Matthews, Elaine & Fung, I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cy. 1, 61–86 (1987).
    CAS Google Scholar
  34. Poulter, B. et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett. 12, 094013 (2017).
  35. Lawrence, D. et al. Technical Description of Version 5.0 of the Community Land Model (CLM) 4245–4287 (The National Center for Atmospheric Research, 2018).
  36. Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S. & Thalasso, F. Methane and carbon dioxide emissions from 40 lakes along a north-south latitudinal transect in Alaska. Biogeosciences 12, 3197–3223 (2015).
    CAS Google Scholar
  37. McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014).
    CAS Google Scholar
  38. Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).
    CAS Google Scholar
  39. Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Change 5, 67–70 (2015).
    CAS Google Scholar
  40. Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
    CAS Google Scholar
  41. Pedersen, E. P., Michelsen, A. & Elberling, B. In situ CH4 oxidation inhibition and 13CH4 labeling reveal methane oxidation and emission patterns in a subarctic heath ecosystem. Biogeochemistry 138, 197–213 (2018).
    CAS Google Scholar
  42. Zhuang, Q. et al. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. J. Geophys. Res. D 108, 8147 (2003).
  43. Walter, B. P. & Heimann, M. A process‐based, climate‐sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochem. Cy. 14, 745–765 (2000).
    CAS Google Scholar
  44. Lau, M. C. Y. et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc. Natl Acad. Sci. USA 113, E7927–E7936 (2016).
    CAS Google Scholar
  45. Stackhouse, B. T. et al. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosciences 120, 1764–1784 (2015).
    CAS Google Scholar
  46. Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).
    CAS Google Scholar
  47. Gottschalk, G. Bacterial Metabolism (Springer Science & Business Media, 2012).
  48. Von Stockar, U., Maskow, T., Liu, J., Marison, I. W. & Patiño, R. Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J. Biotechnol. 121, 517–533 (2006).
    Google Scholar
  49. Stackhouse, B. et al. Atmospheric CH4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature. Geobiology 15, 94–111 (2017).
    CAS Google Scholar
  50. Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).
    CAS Google Scholar
  51. Sellers, P. J. et al. BOREAS in 1997: experiment overview, scientific results, and future directions. J. Geophys. Res. Atmos. 102, 28731–28769 (1997).
    Google Scholar
  52. Harazono, Y. et al. Temporal and spatial differences of methane flux at arctic tundra in Alaska. Mem. Natl Inst. Polar Res. 59, 79–95 (2006).
    CAS Google Scholar
  53. Dinsmore, K. J. et al. Growing season CH4 and N2O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale. Biogeosciences 14, 799–815 (2017).
    CAS Google Scholar
  54. Duan, Q. Y., Gupta, V. K. & Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 76, 501–521 (1993).
    Google Scholar
  55. Melillo, J. M. et al. Global climate change and terrestrial net primary production. Nature 363, 234–240 (1993).
    Google Scholar
  56. Global Soil Data Task (IGBP-DIS, ISO-image of CD). (International Geosphere-Biosphere Program, PANGAEA, 2000); https://doi.org/10.1594/PANGAEA.869912
  57. Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).
    Google Scholar
  58. Peters, W. et al. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res. Atmos. 110, D24304 (2005).
    Google Scholar
  59. Krol, M. et al. The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos. Chem. Phys. 5, 417–432 (2005).
    CAS Google Scholar
  60. Seinfeld, J. H., Pandis, S. N. & Noone, K. Atmospheric chemistry and physics: from air pollution to climate change. Phys. Today 51, 88 (1998).
    Google Scholar

Download references