Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic (original) (raw)
References
McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA115, 3882–3887 (2018). Google Scholar
Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change119, 359–374 (2013). CAS Google Scholar
Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature520, 171–179 (2015). CAS Google Scholar
Juncher Jørgensen, C., Lund Johansen, K. M., Westergaard-Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci.8, 20–23 (2015). Google Scholar
Lau, M. C. Y. et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J.9, 1880–1891 (2015). CAS Google Scholar
D’Imperio, L., Nielsen, C. S., Westergaard-Nielsen, A., Michelsen, A. & Elberling, B. Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape-integrated CH4 budget. Glob. Chang. Biol.23, 966–976 (2017). Google Scholar
Emmerton, C. A. et al. The net exchange of methane with high Arctic landscapes during the summer growing season. Biogeosciences11, 3095–3106 (2014). Google Scholar
Oh, Y. et al. A scalable model for methane consumption in arctic mineral soils. Geophys. Res. Lett.43, 5143–5150 (2016). CAS Google Scholar
Zhuang, Q. et al. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochem. Cy.18, GB3010 (2004). Google Scholar
Zhuang, Q. et al. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition. Global Biogeochem. Cy.27, 650–663 (2013). CAS Google Scholar
Bruhwiler, L. et al. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys.14, 8269–8293 (2014). Google Scholar
Saunois, M. et al. The global methane budget 2000–2012. Earth Syst. Sci. Data8, 697–751 (2016). Google Scholar
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S. & Frankenberg, C. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science327, 322–325 (2010). CAS Google Scholar
Bohn, T. J. et al. WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences12, 3321–3349 (2015). Google Scholar
Miller, S. M. et al. A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations. Global Biogeochem. Cy.30, 1441–1453 (2016). CAS Google Scholar
Hugelius, G. et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data5, 393–402 (2013). Google Scholar
Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA108, 14769–14774 (2011). CAS Google Scholar
Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).
Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Change4, 903–906 (2014). CAS Google Scholar
Trimmer, M. et al. Riverbed methanotrophy sustained by high carbon conversion efficiency. ISME J.9, 2304–2314 (2015). CAS Google Scholar
Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature459, 556–559 (2009). CAS Google Scholar
Christiansen, J. R. et al. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry122, 15–33 (2015). CAS Google Scholar
Baani, M. & Liesack, W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc. Natl Acad. Sci. USA105, 10203–10208 (2008). CAS Google Scholar
Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl Acad. Sci. USA116, 8515–8524 (2019). CAS Google Scholar
Segers, R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry41, 23–51 (1998). CAS Google Scholar
Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change3, 909–912 (2013). CAS Google Scholar
Von Stockar, U. & Liu, J. S. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim. Biophys. Acta Bioenerg.1412, 191–211 (1999). Google Scholar
Tijhuis, L., Van Loosdrecht, M. C. M. & Heijnen, J. J. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol. Bioeng.42, 509–519 (1993). CAS Google Scholar
Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L. & Pfeiffer, E. Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. J. Geophys. Res. Biogeosci.120, 2525–2541 (2015). CAS Google Scholar
Throckmorton, H. M. et al. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes. Hydrol. Process.30, 4972–4986 (2016). Google Scholar
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol.34, 623–642 (2014). Google Scholar
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change109, 213–241 (2011). CAS Google Scholar
Matthews, Elaine & Fung, I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cy.1, 61–86 (1987). CAS Google Scholar
Poulter, B. et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett. 12, 094013 (2017).
Lawrence, D. et al. Technical Description of Version 5.0 of the Community Land Model (CLM) 4245–4287 (The National Center for Atmospheric Research, 2018).
Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S. & Thalasso, F. Methane and carbon dioxide emissions from 40 lakes along a north-south latitudinal transect in Alaska. Biogeosciences12, 3197–3223 (2015). CAS Google Scholar
McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature514, 478–481 (2014). CAS Google Scholar
Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci.9, 312–318 (2016). CAS Google Scholar
Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Change5, 67–70 (2015). CAS Google Scholar
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci.9, 99–105 (2016). CAS Google Scholar
Pedersen, E. P., Michelsen, A. & Elberling, B. In situ CH4 oxidation inhibition and 13CH4 labeling reveal methane oxidation and emission patterns in a subarctic heath ecosystem. Biogeochemistry138, 197–213 (2018). CAS Google Scholar
Zhuang, Q. et al. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. J. Geophys. Res. D108, 8147 (2003).
Walter, B. P. & Heimann, M. A process‐based, climate‐sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochem. Cy.14, 745–765 (2000). CAS Google Scholar
Lau, M. C. Y. et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc. Natl Acad. Sci. USA113, E7927–E7936 (2016). CAS Google Scholar
Stackhouse, B. T. et al. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosciences120, 1764–1784 (2015). CAS Google Scholar
Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol.6, 579–591 (2008). CAS Google Scholar
Gottschalk, G. Bacterial Metabolism (Springer Science & Business Media, 2012).
Von Stockar, U., Maskow, T., Liu, J., Marison, I. W. & Patiño, R. Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J. Biotechnol.121, 517–533 (2006). Google Scholar
Stackhouse, B. et al. Atmospheric CH4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature. Geobiology15, 94–111 (2017). CAS Google Scholar
Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep.1, 285–292 (2009). CAS Google Scholar
Sellers, P. J. et al. BOREAS in 1997: experiment overview, scientific results, and future directions. J. Geophys. Res. Atmos.102, 28731–28769 (1997). Google Scholar
Harazono, Y. et al. Temporal and spatial differences of methane flux at arctic tundra in Alaska. Mem. Natl Inst. Polar Res.59, 79–95 (2006). CAS Google Scholar
Dinsmore, K. J. et al. Growing season CH4 and N2O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale. Biogeosciences14, 799–815 (2017). CAS Google Scholar
Duan, Q. Y., Gupta, V. K. & Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl.76, 501–521 (1993). Google Scholar
Melillo, J. M. et al. Global climate change and terrestrial net primary production. Nature363, 234–240 (1993). Google Scholar
Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ.83, 214–231 (2002). Google Scholar
Peters, W. et al. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res. Atmos.110, D24304 (2005). Google Scholar
Krol, M. et al. The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos. Chem. Phys.5, 417–432 (2005). CAS Google Scholar
Seinfeld, J. H., Pandis, S. N. & Noone, K. Atmospheric chemistry and physics: from air pollution to climate change. Phys. Today51, 88 (1998). Google Scholar