Single nucleotide mapping of trait space reveals Pareto fronts that constrain adaptation (original) (raw)
References
Loschiavo, S. R. Effect of oviposition sites on egg production and longevity of Trogoderma parabile (Coleoptera: Dermestidae)1. Can. Entomol.100, 86–89 (1968). Article Google Scholar
Tinkle, D. W. The concept of reproductive effort and its relation to the evolution of life histories of lizards. Am. Nat.103, 501–516 (1969). Article Google Scholar
Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature346, 357–359 (1990). Article Google Scholar
Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).
Camargo, A., Sarroca, M. & Maneyro, R. Reproductive effort and the egg number vs. size trade-off in Physalaemus frogs (Anura: Leiuperidae). Acta Oecologica34, 163–171 (2008). Article Google Scholar
Cunningham, J. T. Degenerative mutations. Nature130, 203–204 (1932). Article Google Scholar
Wang, Y. et al. Contribution of both positive selection and relaxation of selective constraints to degeneration of flyability during geese domestication. PLoS ONE12, e0185328 (2017). Article Google Scholar
Darwin, C. The Descent of Man, and Selection in Relation to Sex (introduction by Bonner, J.T. & May, R.M.) (Princeton Univ. Press, 1981).
Shoval, O. et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science336, 1157–1160 (2012). ArticleCAS Google Scholar
Tendler, A., Mayo, A. & Alon, U. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells. BMC Syst. Biol.9, 12 (2015). Article Google Scholar
Mooney, K. A., Halitschke, R., Kessler, A. & Agrawal, A. A. Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science327, 1642–1644 (2010). ArticleCAS Google Scholar
Fraebel, D. T. et al. Environment determines evolutionary trajectory in a constrained phenotypic space. eLife6, e24669 (2017). Article Google Scholar
Nidelet, T. & Kaltz, O. Direct and correlated responses to selection in a host–parasite system: testing for the emergence of genotype specificity. Evol. Int. J. Org. Evol.61, 1803–1811 (2007). Article Google Scholar
Buckling, A., Brockhurst, M. A., Travisano, M. & Rainey, P. B. Experimental adaptation to high and low quality environments under different scales of temporal variation. J. Evol. Biol.20, 296–300 (2007). ArticleCAS Google Scholar
Bono, L. M., Smith, L. B., Pfennig, D. W. & Burch, C. L. The emergence of performance trade-offs during local adaptation: insights from experimental evolution. Mol. Ecol.26, 1720–1733 (2017). Article Google Scholar
McGee, L. W. et al. Synergistic pleiotropy overrides the costs of complexity in viral adaptation. Genetics202, 285–295 (2016). ArticleCAS Google Scholar
Jasmin, J.-N. & Kassen, R. On the experimental evolution of specialization and diversity in heterogeneous environments. Ecol. Lett.10, 272–281 (2007). Article Google Scholar
Bennett, A. F. & Lenski, R. E. An experimental test of evolutionary trade-offs during temperature adaptation. Proc. Natl Acad. Sci. USA104, 8649–8654 (2007). ArticleCAS Google Scholar
Satterwhite, R. S. & Cooper, T. F. Constraints on adaptation of Escherichia coli to mixed-resource environments increase over time. Evolution69, 2067–2078 (2015). ArticleCAS Google Scholar
Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature519, 181–186 (2015). ArticleCAS Google Scholar
Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell166, 1585–1596.e22 (2016). ArticleCAS Google Scholar
Li, Y. et al. Hidden complexity of yeast adaptation under simple evolutionary conditions. Curr. Biol.28, 515–525.e6 (2018). ArticleCAS Google Scholar
Seedorf, M. & Silver, P. A. Importin/karyopherin protein family members required for mRNA export from the nucleus. Proc. Natl Acad. Sci. USA94, 8590–8595 (1997). ArticleCAS Google Scholar
Rosenblum, J. S., Pemberton, L. F. & Blobel, G. A nuclear import pathway for a protein involved in tRNA maturation. J. Cell Biol.139, 1655–1661 (1997). ArticleCAS Google Scholar
Baccarini, L., Martínez-Montañés, F., Rossi, S., Proft, M. & Portela, P. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae. Biochim. Biophys. Acta Gene Regul. Mech.1849, 1329–1339 (2015). ArticleCAS Google Scholar
Yona, A. H. et al. Chromosomal duplication is a transient evolutionary solution to stress. Proc. Natl Acad. Sci. USA109, 21010–21015 (2012). ArticleCAS Google Scholar
Natesuntorn, W. et al. Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae. Sci. Rep.5, 12510 (2015). ArticleCAS Google Scholar
Sunshine, A. B. et al. The fitness consequences of aneuploidy are driven by condition-dependent gene effects. PLoS Biol.13, e1002155 (2015). Article Google Scholar
Garay, E. et al. High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions. PLoS Genet.10, e1004168 (2014). Article Google Scholar
Levins, R. Theory of fitness in a heterogeneous environment. I. The fitness set and adaptive function. Am. Nat.96, 361–373 (1962). Article Google Scholar
Ehrlich, E., Kath, N. J. & Gaedke, U. The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton. Preprint at bioRxivhttps://doi.org/10.1101/462622 (2018).
Jessup, C. M. & Bohannan, B. J. M. The shape of an ecological trade-off varies with environment. Ecol. Lett.11, 947–959 (2008). Article Google Scholar
Maharjan, R. et al. The form of a trade-off determines the response to competition. Ecol. Lett.16, 1267–1276 (2013). Article Google Scholar
Roff, D. A. & Fairbairn, D. J. The evolution of trade-offs: where are we? J. Evol. Biol.20, 433–447 (2007). ArticleCAS Google Scholar
Yi, X. & Dean, A. M. Phenotypic plasticity as an adaptation to a functional trade-off. eLife5, e19307 (2016). Article Google Scholar
Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst.48, 183–206 (2017). Article Google Scholar
Zhao, L., Liu, Z., Levy, S. F. & Wu, S. Bartender: a fast and accurate clustering algorithm to count barcode reads. Bioinformatics34, 739–747 (2018). ArticleCAS Google Scholar
Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science344, 1519–1522 (2014). ArticleCAS Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J.17, 10–12 (2011). Article Google Scholar
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).
Freed, D. N., Aldana, R., Weber, J. A. & Edwards, J. S. The Sentieon genomics tools – a fast and accurate solution to variant calling from next-generation sequence data. Preprint at bioRxivhttps://doi.org/10.1101/115717 (2017).
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin)6, 80–92 (2012). ArticleCAS Google Scholar