Microbial life and biogeochemical cycling on land 3,220 million years ago (original) (raw)
References
Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature537, 535–538 (2016). Article Google Scholar
Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the Early Archaean era of Australia. Nature441, 714–718 (2006). Article Google Scholar
Tice, M. M. & Lowe, D. R. Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature431, 549–552 (2004). Article Google Scholar
Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. & Brasier, M. D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci.4, 698–702 (2011). Article Google Scholar
Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature543, 60–64 (2017). Article Google Scholar
Flament, N., Coltice, N. & Rey, P. F. The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. Precambrian Res.229, 177–188 (2013). Article Google Scholar
Beraldi-Campesi, H. Early life on land and the first terrestrial ecosystems. Ecol. Process.2, 1 (2013). Article Google Scholar
Wellman, C. H. & Strother, P. K. The terrestrial biota prior to the origin of land plants (embryophytes): a review of the evidence. Palaeontology58, 601–627 (2015). Article Google Scholar
Watanabe, Y., Martini, J. E. & Ohmoto, H. Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature408, 574–578 (2000). Article Google Scholar
Rye, R. & Holland, H. D. Life associated with a 2.76 Ga ephemeral pond? Evidence from Mount Roe #2 paleosol. Geology28, 483–486 (2000). Article Google Scholar
Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature501, 535–538 (2013). Article Google Scholar
Mukhopadhyay, J. et al. Oxygenation of the Archean atmosphere: new paleosol constraints from eastern India. Geology42, 923–926 (2014). Article Google Scholar
Nabhan, S., Wiedenbeck, M., Milke, R. & Heubeck, C. Biogenic overgrowth on detrital pyrite in ca. 3.2 Ga Archean paleosols. Geology44, 763–766 (2016). Article Google Scholar
Djokic, T., Van Kranendonk, M. J., Campbell, K. A., Walter, M. R. & Ward, C. R. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun.8, 15263 (2017). Article Google Scholar
Javaux, E. J., Marshall, C. P. & Bekker, A. Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature463, 934–938 (2010). Article Google Scholar
Noffke, N., Eriksson, K. A., Hazen, R. M. & Simpson, E. L. A new window into Early Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology34, 253 (2006). Article Google Scholar
Heubeck, C. An early ecosystem of Archean tidal microbial mats (Moodies Group, South Africa, ca. 3.2 Ga). Geology37, 931–934 (2009). Article Google Scholar
Homann, M., Heubeck, C., Airo, A. & Tice, M. M. Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Res.266, 47–64 (2015). Article Google Scholar
Homann, M. et al. Evidence for cavity-dwelling microbial life in 3.22 Ga tidal deposits. Geology44, 51–54 (2016). Article Google Scholar
Eriksson, K. A., Simpson, E. L. & Mueller, W. U. An unusual fluvial to tidal transition in the mesoarchean Moodies Group, South Africa: a response to high tidal range and active tectonics. Sediment. Geol.190, 13–24 (2006). Article Google Scholar
Heubeck, C. et al. Geological constraints on Archean (3.22 Ga) coastal-zone processes from the Dycedale Syncline, Barberton Greenstone Belt. South Afr. J. Geol.119, 495–518 (2016). Article Google Scholar
De Ronde, C. E. J. & Kamo, S. L. An Archaean arc–arc collisional event: a short-lived (ca 3 Myr) episode, Weltevreden area, Barberton greenstone belt, South Africa. J. Afr. Earth Sci.30, 219–248 (2000). Article Google Scholar
Heubeck, C. et al. Timing of deposition and deformation of the Moodies Group (Barberton Greenstone Belt, South Africa): very-high-resolution of Archaean surface processes. Precambrian Res.231, 236–262 (2013). Article Google Scholar
Farber, K., Dziggel, A., Trumbull, R. B., Meyer, F. M. & Wiedenbeck, M. Tourmaline B-isotopes as tracers of fluid sources in silicified Palaeoarchaean oceanic crust of the Mendon Formation, Barberton greenstone belt, South Africa. Chem. Geol.417, 134–147 (2015). Article Google Scholar
Xie, X., Byerly, G. R. & Ferrell, R. E. Jr. IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry. Contrib. Mineral. Petrol.126, 275–291 (1997). Article Google Scholar
Tice, M. M., Bostick, B. C. & Lowe, D. R. Thermal history of the 3.5–3.2 Ga Onverwacht and Fig Tree Groups, Barberton greenstone belt, South Africa, inferred by Raman microspectroscopy of carbonaceous material. Geology32, 37 (2004). Article Google Scholar
Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta62, 69–77 (1998). Article Google Scholar
Hayes, J. M., Strauss, H. & Kaufman, A. J. The abundance of in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol.161, 103–125 (1999). Article Google Scholar
Driese, S. G. et al. Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res.189, 1–17 (2011). Article Google Scholar
Laws, E. A., Popp, B. N., Cassas, N. & Tanimoto, J. 13C discrimination patterns in oceanic phytoplankton: likely influence of CO2 concentrating mechanisms, and implications for palaeoreconstructions. Funct. Plant Biol.29, 323–333 (2002). Article Google Scholar
Schidlowski, M. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature333, 313–318 (1988). Article Google Scholar
Eigenbrode, J. L. & Freeman, K. H. Late Archean rise of aerobic microbial ecosystems. Proc. Natl Acad. Sci. USA103, 15759–15764 (2006). Article Google Scholar
Stüeken, E. E. & Buick, R. Environmental control on microbial diversification and methane production in the Mesoarchean. Precambrian Res.304, 64–72 (2018). Article Google Scholar
Slotznick, S. P. & Fischer, W. W. Examining Archean methanotrophy. Earth Planet. Sci. Lett.441, 52–59 (2016). Article Google Scholar
Havig, J. R., Hamilton, T. L., Bachan, A. & Kump, L. R. Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped Earth system progression across the Archean and Paleoproterozoic. Earth Sci. Rev.174, 1–21 (2017). Article Google Scholar
Baumgartner, L. K. et al. Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol.185, 131–145 (2006). Article Google Scholar
Hoehler, T. M., Bebout, B. M. & Des Marais, D. J. The role of microbial mats in the production of reduced gases on the early Earth. Nature412, 324–327 (2001). Article Google Scholar
Lovley, D. R. & Klug, M. J. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl. Environ. Microbiol.45, 187–192 (1983). Google Scholar
Nabhan, S., Luber, T., Scheffler, F. & Heubeck, C. Climatic and geochemical implications of Archean pedogenic gypsum in the Moodies Group (<3.2 Ga), Barberton Greenstone Belt, South Africa. Precambrian Res.275, 119–134 (2016). Article Google Scholar
Tice, M. M. & Lowe, D. R. Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology34, 37 (2006). Article Google Scholar
Bandyopadhyay, A., Stöckel, J., Min, H., Sherman, L. A. & Pakrasi, H. B. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat. Commun.1, 139 (2010). Article Google Scholar
Ader, M. et al. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: assumptions and perspectives. Chem. Geol.429, 93–110 (2016). Article Google Scholar
Ader, M. et al. Nitrogen isotopic evolution of carbonaceous matter during metamorphism: methodology and preliminary results. Chem. Geol.232, 152–169 (2006). Article Google Scholar
Stüeken, E. E. A test of the nitrogen-limitation hypothesis for retarded eukaryote radiation: nitrogen isotopes across a Mesoproterozoic basinal profile. Geochim. Cosmochim. Acta120, 121–139 (2013). Article Google Scholar
Papineau, D. et al. High primary productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precambrian Res.171, 37–56 (2009). Article Google Scholar
Kasting, J. F. & Walker, J. C. G. Limits on oxygen concentration in the prebiological atmosphere and the rate of abiotic fixation of nitrogen. J. Geophys. Res.86, 1147 (1981). Article Google Scholar
Navarro-gonz, R., Molina, M. J. & Molina, L. T. Nitrogen fixation by volcanic lightning in the early Earth. Geophys. Res. Lett.25, 3123–3126 (1998). Article Google Scholar
Stüeken, E. E., Kipp, M. A., Koehler, M. C. & Buick, R. The evolution of Earth’s biogeochemical nitrogen cycle. Earth Sci. Rev.160, 220–239 (2016). Article Google Scholar
Joye, S. B. & Paerl, H. W. Nitrogen cycling in microbial mats—rates and patterns of denitrification and nitrogen-fixation. Mar. Biol.119, 285–295 (1994). Article Google Scholar
Sforna, M. C., van Zuilen, M. A. & Philippot, P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochim. Cosmochim. Acta124, 18–33 (2014). Article Google Scholar
Beyssac, O., Goffé, B., Chopin, C. & Rouzaud, J. N. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J. Metamorph. Geol.20, 859–871 (2002). Article Google Scholar
Kouketsu, Y. et al. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width. Isl. Arc23, 33–50 (2014). Article Google Scholar
Stüeken, E. E., Zaloumis, J., Meixnerová, J. & Buick, R. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks. Geochim. Cosmochim. Acta217, 80–94 (2017). Article Google Scholar
Ader, M., Boudou, J.-P., Javoy, M., Goffe, B. & Daniels, E. Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (U.S.A.) and from the Bramsche Massif (Germany). Org. Geochem.29, 315–323 (1998). Article Google Scholar
Li, L., Cartigny, P. & Ader, M. Kinetic nitrogen isotope fractionation associated with thermal decomposition of NH3: experimental results and potential applications to trace the origin of N2 in natural gas and hydrothermal systems. Geochim. Cosmochim. Acta73, 6282–6297 (2009). Article Google Scholar