Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells (original) (raw)

References

  1. Hooper, A. & Tofield, B. C. All-solid-state batteries. J. Power Sources 11, 33–41 (1984).
    Article CAS Google Scholar
  2. Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y.-M. & Chen, Z. Review—practical challenges hindering the development of solid state Li ion batteries. J. Electrochem. Soc. 164, A1731–A1744 (2017).
    Article CAS Google Scholar
  3. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).
    Article Google Scholar
  4. Zhou, W. et al. Polymer lithium-garnet interphase for an all-solid-state rechargeable battery. Nano Energy 53, 926–931 (2018).
    Article CAS Google Scholar
  5. Pang, Q., Liang, X., Shyamsunder, A. & Nazar, L. F. An in vivo formed solid electrolyte surface layer enables stable plating of Li metal. Joule 1, 871–886 (2017).
    Article CAS Google Scholar
  6. Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017).
    Article CAS Google Scholar
  7. Nagao, M. et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys. Chem. Chem. Phys. 15, 18600–18606 (2013).
    Article CAS Google Scholar
  8. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).
    Article CAS Google Scholar
  9. Monroe, C. & Newman, J. Dendrite growth in lithium/polymer systems. J. Electrochem. Soc. 150, A1377 (2003).
    Article CAS Google Scholar
  10. Lotsch, B. V. & Maier, J. Relevance of solid electrolytes for lithium-based batteries: a realistic view. J. Electroceram. 38, 128–141 (2017).
    Article Google Scholar
  11. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1–12 (2017).
    Article Google Scholar
  12. Swamy, T. et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J. Electrochem. Soc. 165, A3648–A3655 (2018).
    Article CAS Google Scholar
  13. Sharafi, A., Haslam, C. G., Kerns, R. D., Wolfenstine, J. & Sakamoto, J. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A 5, 21491–21504 (2017).
    Article CAS Google Scholar
  14. Sharafi, A. et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961–7968 (2017).
    Article CAS Google Scholar
  15. Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).
    Article CAS Google Scholar
  16. Botros, M., Djenadic, R., Clemens, O., Möller, M. & Hahn, H. Field assisted sintering of fine-grained Li7-3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance. J. Power Sources 309, 108–115 (2016).
    Article CAS Google Scholar
  17. Yonemoto, F. et al. Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. J. Power Sources 343, 207–215 (2017).
    Article CAS Google Scholar
  18. Manalastas, W. et al. Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy. J. Power Sources 412, 287–293 (2019).
    Article CAS Google Scholar
  19. Basappa, R. H., Ito, T. & Yamada, H. Contact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention. J. Electrochem. Soc. 164, A666–A671 (2017).
    Article CAS Google Scholar
  20. Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).
    Article CAS Google Scholar
  21. Koerver, R. et al. Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem. Mater. 29, 5574–5582 (2017).
    Article CAS Google Scholar
  22. Koshikawa, H. et al. Dynamic changes in charge-transfer resistance at Li metal/Li7La3Zr2O12 interfaces during electrochemical Li dissolution/deposition cycles. J. Power Sources 376, 147–151 (2018).
    Article CAS Google Scholar
  23. Jow, T. R. & Liang, C. C. Interface between solid electrode and solid electrolyte—a study of the Li/LiI(AI2O3) solid-electrolyte system. J. Electrochem. Soc. 130, 737–740 (1983).
    Article CAS Google Scholar
  24. Jow, T. R. & Liang, C. C. Interface between solid anode and solid electrolyte-effect of pressure on Li/LiI(Al2O3) interface.Solid State Ion. 9-10, 695–698 (1983).
    Article CAS Google Scholar
  25. Han, F. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).
    Article CAS Google Scholar
  26. Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12.Appl. Interfaces Mater. 11, 14463–14477 (2019).
    Article CAS Google Scholar
  27. Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).
    Article CAS Google Scholar
  28. Zheng, F., Kotobuki, M., Song, S., Lai, M. O. & Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 389, 198–213 (2018).
    Article CAS Google Scholar
  29. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).
    Article CAS Google Scholar
  30. Zhou, L. et al. Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity. ACS Energy Lett. 4, 265–270 (2019).
    Article CAS Google Scholar
  31. Deng, Z., Wang, Z., Chu, I.-H., Luo, J. & Ong, S. P. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2016).
    Article CAS Google Scholar
  32. Yu, C., van Eijck, L., Ganapathy, S. & Wagemaker, M. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim. Acta 215, 93–99 (2016).
    Article CAS Google Scholar
  33. Wenzel, S., Sedlmaier, S. J., Dietrich, C., Zeier, W. G. & Janek, J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018).
    Article CAS Google Scholar
  34. Wu, E. A. et al. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: a joint experimental and computational study. ACS Appl. Mater. Interfaces 10, 10076–10086 (2018).
    Article CAS Google Scholar
  35. Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).
    Article CAS Google Scholar
  36. Wang, M., Wolfenstine, J. B. & Sakamoto, J. Temperature dependent flux balance of the Li/Li7La3Zr2O12 Interface. Electrochim. Acta 296, 842–847 (2019).
    Article CAS Google Scholar
  37. Nemat‐Nasser, S. & Hori, M. Void collapse and void growth in crystalline solids. J. Appl. Phys. 62, 2746–2757 (1987).
    Article Google Scholar
  38. Masias, A., Felten, N., Garcia-Mendez, R., Wolfenstine, J. & Sakamoto, J. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2019).
    Article CAS Google Scholar

Download references