High-performance solar flow battery powered by a perovskite/silicon tandem solar cell (original) (raw)

References

  1. Eke, K. P. Emerging considerations of rural electrification infrastructure development in Africa. In 2017 IEEE PES Power Africa Conference 138–142 (IEEE, 2017).
  2. Cook, P. Infrastructure, rural electrification and development. Energy Sustain. Dev. 15, 304–313 (2011).
    Google Scholar
  3. Wamukonya, N. Solar home system electrification as a viable technology option for Africa’s development. Energy Policy 35, 6–14 (2007).
    Google Scholar
  4. Halder, P. K. Potential and economic feasibility of solar home systems implementation in Bangladesh. Renew. Sustain. Energy Rev. 65, 568–576 (2016).
    Google Scholar
  5. Charles, R. G., Davies, M. L., Douglas, P., Hallin, I. L. & Mabbett, I. Sustainable energy storage for solar home systems in rural Sub-Saharan Africa—a comparative examination of lifecycle aspects of battery technologies for circular economy, with emphasis on the South African context. Energy 166, 1207–1215 (2019).
    CAS Google Scholar
  6. Gurung, A. & Qiao, Q. Q. Solar charging batteries: advances, challenges, and opportunities. Joule 2, 1217–1230 (2018).
    CAS Google Scholar
  7. Schmidt, D., Hager, M. D. & Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 6, 1500369 (2015).
    Google Scholar
  8. Yu, M. et al. Solar-powered electrochemical energy storage: an alternative to solar fuels. J. Mater. Chem. A 4, 2766–2782 (2016).
    CAS Google Scholar
  9. Wedege, K., Bae, D., Smith, W. A., Mendes, A. & Bentien, A. Solar redox flow batteries with organic redox couples in aqueous electrolytes: a minireview. J. Phys. Chem. C 122, 25729–25740 (2018).
    CAS Google Scholar
  10. Wedege, K. et al. Unbiased, complete solar charging of a neutral flow battery by a single Si photocathode. RSC Adv. 8, 6331–6340 (2018).
    CAS Google Scholar
  11. Li, W., Fu, H.-C., Zhao, Y., He, J.-H. & Jin, S. 14.1% efficient monolithically integrated solar flow battery. Chem 4, 2644–2657 (2018).
    CAS Google Scholar
  12. Li, W. J. et al. A long lifetime aqueous organic solar flow battery. Adv. Energy Mater. 9, 1900918 (2019).
    Google Scholar
  13. Yu, M. Z. et al. Aqueous lithium-iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 137, 8332–8335 (2015).
    CAS Google Scholar
  14. Liao, S. et al. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat. Commun. 7, 11474–11478 (2016).
    CAS Google Scholar
  15. Li, W. et al. Integrated photoelectrochemical solar energy conversion and organic redox flow battery devices. Angew. Chem. Int. Ed. 55, 13104–13108 (2016).
    CAS Google Scholar
  16. Wedege, K., Azevedo, J., Khataee, A., Bentien, A. & Mendes, A. Direct solar charging of an organic-inorganic, stable, and aqueous alkaline redox flow battery with a hematite photoanode. Angew. Chem. Int. Ed. 55, 7142–7147 (2016).
    CAS Google Scholar
  17. Cheng, Q. et al. Photorechargeable high voltage redox battery enabled by Ta3N5 and GaN/Si dual-photoelectrode. Adv. Mater. 351, 1700312–1700318 (2017).
    Google Scholar
  18. McKone, J. R., DiSalvo, F. J. & Abruna, H. D. Solar energy conversion, storage, and release using an integrated solar-driven redox flow battery. J. Mater. Chem. A 5, 5362–5372 (2017).
    CAS Google Scholar
  19. Zhou, Y. et al. Efficient solar energy harvesting and storage through a robust photocatalyst driving reversible redox reactions. Adv. Mater. 103, 1802294–1802297 (2018).
    Google Scholar
  20. Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).
    CAS Google Scholar
  21. Khan, M. A. et al. Importance of oxygen measurements during photoelectrochemical water-splitting reactions. ACS Energy Lett. 4, 2712–2718 (2019).
    CAS Google Scholar
  22. Liu, T., Wei, X., Nie, Z., Sprenkle, V. & Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 6, 1501449 (2015).
    Google Scholar
  23. Liu, Y. et al. A long lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical. Chem 5, 1861–1870 (2019).
    CAS Google Scholar
  24. Hu, S. et al. Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J. Phys. Chem. C 119, 24201–24228 (2015).
    CAS Google Scholar
  25. Bae, D., Seger, B., Vesborg, P. C. K., Hansen, O. & Chorkendorff, I. Strategies for stable water splitting via protected photoelectrodes. Chem. Soc. Rev. 46, 1933–1954 (2017).
    CAS Google Scholar
  26. Beh, E. S. et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2, 639–644 (2017).
    CAS Google Scholar
  27. Green, M. A. et al. Solar cell efficiency tables (version 54). Prog. Photovolt. 27, 565–575 (2019).
    Google Scholar
  28. Seger, B. et al. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 135, 1057–1064 (2013).
    CAS Google Scholar
  29. Shaner, M. R., Hu, S., Sun, K. & Lewis, N. S. Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2. Energy Environ. Sci. 8, 203–207 (2015).
    CAS Google Scholar
  30. Zheng, J. H. et al. Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy Environ. Sci. 11, 2432–2443 (2018).
    CAS Google Scholar
  31. Zheng, J. H. et al. 21.8% efficient monolithic perovskite/homo-junction-silicon tandem solar cell on 16 cm(2). ACS Energy Lett. 3, 2299–2300 (2018).
    CAS Google Scholar
  32. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).
    CAS Google Scholar
  33. Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).
    CAS Google Scholar
  34. Yu, Z. S., Leilaeioun, M. & Holman, Z. Selecting tandem partners for silicon solar cells. Nat. Energy 1, 16137 (2016).
    Google Scholar
  35. Ji, Y. et al. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate. Adv. Energy Mater. 9, 1900039 (2019).
    Google Scholar
  36. DeBruler, C. et al. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries. Chem 3, 961–978 (2017).
    CAS Google Scholar
  37. Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater 2, 16080–16018 (2016).
    Google Scholar
  38. Hollas, A. et al. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 3, 508–514 (2018).
    CAS Google Scholar
  39. Luo, J. A., Hu, B., Hu, M. W., Zhao, Y. & Liu, T. L. Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4, 2220–2240 (2019).
    CAS Google Scholar
  40. Weber, A. Z. et al. Redox flow batteries: a review. J. Appl. Electrochem. 41, 1137–1164 (2011).
    CAS Google Scholar
  41. Darling, R. M., Gallagher, K. G., Kowalski, J. A., Ha, S. & Brushett, F. R. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 7, 3459–3477 (2014).
    CAS Google Scholar
  42. Hu, B., DeBruler, C., Rhodes, Z. & Liu, T. L. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. J. Am. Chem. Soc. 139, 1207–1214 (2017).
    CAS Google Scholar
  43. Goulet, M. A. & Aziz, M. J. Flow battery molecular reactant stability determined by symmetric cell cycling methods. J. Electrochem. Soc. 165, A1466–A1477 (2018).
    CAS Google Scholar

Download references