Methods for phylogenetic analysis of microbiome data (original) (raw)
Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science350, aac9323 (2015). ArticlePubMedCAS Google Scholar
Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, Princeton, 1982). Google Scholar
MacArthur, R. H. Environmental factors affecting bird species diversity. Am. Nat.98, 387–397 (1964). Article Google Scholar
May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, Princeton, 2001). Google Scholar
Arditi, R. & Ginzburg, L. R. How Species Interact: Altering the Standard View on Trophic Ecology (Oxford University Press, Oxford, 2012). Book Google Scholar
Consortium, H. M. P. et al. Structure, function and diversity of the healthy human microbiome. Nature486, 207–214 (2012). ArticleCAS Google Scholar
Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science320, 1034–1039 (2008). ArticlePubMedCAS Google Scholar
Bardgett, R. D., Freeman, C. & Ostle, N. J. Microbial contributions to climate change through carbon cycle feedbacks. ISME J.2, 805–814 (2008). ArticlePubMedCAS Google Scholar
Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford Univ. Press, Oxford, 2000). Google Scholar
Yang, Z. & Rannala, B. Molecular phylogenetics: principles and practice. Nat. Rev. Genet.13, 303 (2012). ArticlePubMedCAS Google Scholar
Hillis, D. M. & Dixon, M. T. Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol.66, 411–453 (1991). ArticlePubMedCAS Google Scholar
Snel, B., Bork, P. & Huynen, M. A. Genome phylogeny based on gene content. Nat. Genet.21, 108–110 (1999). ArticlePubMedCAS Google Scholar
Zaneveld, J. R., Lozupone, C., Gordon, J. I. & Knight, R. Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives. Nucleic Acids Res.38, 3869–3879 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Hall, B. G. & Barlow, M. Evolution of the serine β-lactamases: past, present and future. Drug Resist. Updat.7, 111–123 (2004). ArticlePubMedCAS Google Scholar
Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol.19, 2226–2238 (2002). ArticlePubMedCAS Google Scholar
Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE8, e57923 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol.73, 1576–1585 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Riesenfeld, S. J. & Pollard, K. S. Beyond classification: gene-family phylogenies from shotgun metagenomic reads enable accurate community analysis. BMC Genomics14, 419 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution39, 783–791 (1985). ArticlePubMed Google Scholar
Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci.326, 119–157 (1989). ArticlePubMedCAS Google Scholar
Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat.149, 646–667 (1997). Article Google Scholar
Blomberg, S. P., Lefevre, J. G., Wells, J. A. & Waterhouse, M. Independent contrasts and PGLS regression estimators are equivalent. Syst. Biol.61, 382–391 (2012). ArticlePubMed Google Scholar
Pagel, M. Inferring the historical patterns of biological evolution. Nature401, 877–884 (1999). ArticlePubMedCAS Google Scholar
Blomberg, S. P., Garland, T. Jr, Ives, A. R. & Crespi, B. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution57, 717–745 (2003). ArticlePubMed Google Scholar
Lavin, S. R., Karasov, W. H., Ives, A. R., Middleton, K. M., & Garland, T.Jr. Morphometrics of the avian small intestine compared with that of nonflying mammals: a phylogenetic approach. Physiol. Biochem. Zool.81, 526–550 (2008). ArticlePubMed Google Scholar
Lindenfors, P., Revell, L. J. & Nunn, C. L. Sexual dimorphism in primate aerobic capacity: a phylogenetic test. J. Evol. Biol.23, 1183–1194 (2010). ArticlePubMedPubMed Central Google Scholar
Garamszegi, L. Z. Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology: Concepts and Practice (Springer, London, 2014).
Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics20, 289–290 (2004). ArticlePubMedCAS Google Scholar
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol.3, 217–223 (2012). Article Google Scholar
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics26, 1463–1464 (2010). ArticlePubMedCAS Google Scholar
Orme, D. The Caper Package: Comparative Analysis of Phylogenetics and Evolution in R. R Package v.5 (CRAN, 2013).
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics24, 129–131 (2007). ArticlePubMedCAS Google Scholar
Tung Ho, Ls & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol.63, 397–408 (2014). Article Google Scholar
Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol.31, 814–821 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Cunningham, C. W., Omland, K. E. & Oakley, T. H. Reconstructing ancestral character states: a critical reappraisal. Trends Ecol. Evol.13, 361–366 (1998). ArticlePubMedCAS Google Scholar
Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T. & Poon, A. F. Y. Ancestral reconstruction. PLoS Comput. Biol.12, e1004763 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Kuhner, M. K. & Felsenstein, J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol.11, 459–468 (1994). PubMedCAS Google Scholar
Joy, J. B., Liang, R. H., Mccloskey, R. M., Nguyen, T. & Art, F. Ancestral reconstruction. PLoS Comput. Biol.112, e1004763 (2016). ArticleCAS Google Scholar
Washburne, A. D. et al. Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets. PeerJ5, e2969 (2017). ArticlePubMedPubMed Central Google Scholar
Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. A phylogenetic transform enhances analysis of compositional microbiota data. eLife6, e21887 (2017). ArticlePubMedPubMed Central Google Scholar
Socolar, J. & Washburne, A. Prey carrying capacity modulates the effect of predation on prey diversity. Am. Nat.186, 333–347 (2015). ArticlePubMed Google Scholar
Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol.31, 67–80 (2016). ArticlePubMed Google Scholar
Aitchison, J. The Statistical Analysis of Compositional Data (Chapman and Hall, London, 1986). Book Google Scholar
Gloor, G. B. & Reid, G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol.62, 692–703 (2016). ArticlePubMedCAS Google Scholar
Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol.66, 1328–1333 (2000). ArticlePubMedPubMed CentralCAS Google Scholar
Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol.71, 8228–8235 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Chang, Q., Luan, Y. & Sun, F. Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny. BMC Bioinformatics12, 118 (2011). ArticlePubMedPubMed Central Google Scholar
Chen, J. et al. Associating microbiome composition with environmental covariates using generalized UniFrac distances. 28, 2106–2113 (2012).
Swenson, N. G. Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLoS ONE6, e21264 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Chen, J., Bushman, F. D., Lewis, J. D., Wu, G. D. & Li, H. Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics14, 244–258 (2013). ArticlePubMed Google Scholar
Purdom, E. Analysis of a data matrix and a graph: metagenomic data and the phylogenetic tree. Ann. Appl. Stat.5, 2326–2358 (2011). Article Google Scholar
Fukuyama, J. et al. Multidomain analyses of a longitudinal human microbiome intestinal cleanout perturbation experiment. PLoS Comput. Biol.13, e1005706 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J.4, 17 (2010). ArticlePubMedCAS Google Scholar
Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol.3, 679 (2005). ArticlePubMedCAS Google Scholar
Cohen, O., Gophna, U. & Pupko, T. The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer research article. 28, 1481–1489 (2011).
Kitahara, K. & Miyazaki, K. Natural and experimental evidence for horizontal gene transfer of 16S rRNA revisiting bacterial phylogeny. 3, e24210 (2013).
Segata, N., Börnigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun.4, 2304 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Than, C., Ruths, D. & Nakhleh, L. PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics9, 322 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Diniz-Filho, J. A. F., Sant’Ana, C. E. R. & Bini, L. M. An eigenvector method for estimating phylogenetic inertia. Evolution52, 1247–1262 (1998). ArticlePubMed Google Scholar
Gloor, G. B. & Reid, G. Compositional analysis: a valid approach to analyze microbiome high throughput sequencing data. Can. J. Microbiol.62, 692–703 (2016). ArticlePubMedCAS Google Scholar
Freckleton, R. P., Cooper, N. & Jetz, W. Comparative methods as a statistical fix: the dangers of ignoring an evolutionary model. Am. Nat.178, E10–E17 (2011). ArticlePubMed Google Scholar
Heath, T. A., Hedtke, S. M. & Hillis, D. M. Taxon sampling and the accuracy of phylogenetic analyses. J. Syst. Evol.46, 239–257 (2008). Google Scholar
Hipsley, C. A. & Müller, J. Beyond fossil calibrations: realities of molecular clock practices in evolutionary biology. Front. Genet.5, 138 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Yang, Z. Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol. Evol.11, 367–372 (1996). ArticlePubMedCAS Google Scholar
Hodgkinson, A. & Eyre-Walker, A. Variation in the mutation rate across mammalian genomes. Nat. Rev. Genet.12, 756 (2011). ArticlePubMedCAS Google Scholar