High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres (original) (raw)
References
Ippen, E. P. Low-power quasi-cw raman oscillator. Appl. Phys. Lett.16, 303–305 (1970). ArticleADS Google Scholar
Miles, R. B., Laufer, G. & Bjorklund, G. C. Coherent anti-Stokes Raman scattering in a hollow dielectric waveguide. Appl. Phys. Lett.30, 417–419 (1977). ArticleADS Google Scholar
Durfee, C. G., Backus, S., Murnane, M. M. & Kapteyn, H. C. Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves. Opt. Lett.22, 1565–1567 (1997). ArticleADS Google Scholar
Kida, Y. & Imasaka, T. Optical parametric amplification of a supercontinuum in a gas. Appl. Phys. B116, 673–680 (2014). ArticleADS Google Scholar
Misoguti, L. et al. Generation of broadband VUV light using third-order cascaded processes. Phys. Rev. Lett.87, 013601 (2001). ArticleADS Google Scholar
Wagner, N. L. et al. Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping. Phys. Rev. Lett.93, 173902 (2004). ArticleADS Google Scholar
Anderson, P. N., Horak, P., Frey, J. G. & Brocklesby, W. S. High-energy laser-pulse self-compression in short gas-filled fibers. Phys. Rev. A89, 013819 (2014). ArticleADS Google Scholar
Gao, X. et al. Ionization-assisted spatiotemporal localization in gas-filled capillaries. Opt. Lett.43, 3112–3115 (2018). ArticleADS Google Scholar
Durfee, C. G. et al. Phase matching of high-order harmonics in hollow waveguides. Phys. Rev. Lett.83, 2187–2190 (1999). ArticleADS Google Scholar
Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science336, 1287–1291 (2012). ArticleADSMathSciNet Google Scholar
Chemnitz, M. et al. Hybrid soliton dynamics in liquid-core fibres. Nat. Commun.8, 42 (2017). ArticleADS Google Scholar
Nisoli, M., Silvestri, S. D. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett.68, 2793–2795 (1996). ArticleADS Google Scholar
Nisoli, M. et al. Toward a terawatt-scale sub-10-fs laser technology. IEEE J. Sel. Top. Quantum Electron.4, 414–420 (1998). ArticleADS Google Scholar
Shabat, A. & Zakharov, V. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP34, 62 (1972). ADSMathSciNet Google Scholar
Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett.23, 142–144 (1973). ArticleADS Google Scholar
Mollenauer, L. F., Stolen, R. H., Gordon, J. P. & Tomlinson, W. J. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt. Lett.8, 289–291 (1983). ArticleADS Google Scholar
Im, S.-J., Husakou, A. & Herrmann, J. High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs. Opt. Express18, 5367–5374 (2010). ArticleADS Google Scholar
Joly, N. Y. et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Phys. Rev. Lett.106, 203901 (2011). ArticleADS Google Scholar
Mak, K. F., Travers, J. C., Joly, N. Y., Abdolvand, A. & Russell, P. S. J. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber. Opt. Lett.38, 3592–3595 (2013). ArticleADS Google Scholar
Balciunas, T. et al. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Commun.6, 6117 (2015). ArticleADS Google Scholar
Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys.78, 1135–1184 (2006). ArticleADS Google Scholar
Wai, P. K. A., Menyuk, C. R., Lee, Y. C. & Chen, H. H. Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett.11, 464–466 (1986). ArticleADS Google Scholar
Mak, K. F., Travers, J. C., Hölzer, P., Joly, N. Y. & Russell, P. S. J. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF. Opt. Express21, 10942–10953 (2013). ArticleADS Google Scholar
Belli, F., Abdolvand, A., Chang, W., Travers, J. C. & Russell, P. S. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica2, 292–300 (2015). Article Google Scholar
Ermolov, A., Mak, K. F., Frosz, M. H., Travers, J. C. & Russell, P. S. J. Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton–plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Phys. Rev. A92, 033821 (2015). ArticleADS Google Scholar
Bromberger, H. et al. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. Lett.107, 091101 (2015). ArticleADS Google Scholar
Köttig, F., Tani, F., Biersach, C. M., Travers, J. C. & Russell, P. S. Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica4, 1272–1276 (2017). Article Google Scholar
Travers, J. C., Chang, W., Nold, J., Joly, N. Y. & Russell, P. S. J. Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B28, A11–A26 (2011). Article Google Scholar
Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A. & Travers, J. C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photon.8, 278–286 (2014). ArticleADS Google Scholar
Ouzounov, D. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science301, 1702–1704 (2003). ArticleADS Google Scholar
Markos, C., Travers, J. C., Abdolvand, A., Eggleton, B. J. & Bang, O. Hybrid photonic-crystal fiber. Rev. Mod. Phys.89, 045003 (2017). ArticleADS Google Scholar
Saleh, M. F. & Biancalana, F. Soliton dynamics in gas-filled hollow-core photonic crystal fibers. J. Opt.18, 013002 (2016). ArticleADS Google Scholar
Marcatili, E. & Schmeltzer, R. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J.43, 1783–1809 (1964). Article Google Scholar
Robinson, J. et al. The generation of intense, transform-limited laser pulses with tunable duration from 6 to 30 fs in a differentially pumped hollow fibre. Appl. Phys. B85, 525–529 (2006). ArticleADS Google Scholar
Bohman, S., Suda, A., Kanai, T., Yamaguchi, S. & Midorikawa, K. Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow-fiber pulse compression. Opt. Lett.35, 1887–1889 (2010). ArticleADS Google Scholar
Böhle, F. et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett.11, 095401 (2014). ArticleADS Google Scholar
Cardin, V. et al. 0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression. Appl. Phys. Lett.107, 181101 (2015). ArticleADS Google Scholar
Silva, F. et al. Strategies for achieving intense single-cycle pulses with in-line post-compression setups. Opt. Lett.43, 337–340 (2018). ArticleADS Google Scholar
Jeong, Y.-G. et al. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Sci. Rep.8, 11794 (2018). ArticleADS Google Scholar
Husakou, A. & Herrmann, J. Soliton-effect pulse compression in the single-cycle regime in broadband dielectric-coated metallic hollow waveguides. Opt. Express17, 17636–17644 (2009). ArticleADS Google Scholar
López-Zubieta, B. A., Jarque, E. C., Sola, Í. J. & Roman, J. S. Theoretical analysis of single-cycle self-compression of near infrared pulses using high-spatial modes in capillary fibers. Opt. Express26, 6345–6350 (2018). ArticleADS Google Scholar
López-Zubieta, B. A., Jarque, E. C., Sola, Í. J. & Roman, J. S. Spatiotemporal-dressed optical solitons in hollow-core capillaries. OSA Continuum1, 930–938 (2018). Article Google Scholar
Voronin, A. A. & Zheltikov, A. M. Subcycle solitonic breathers. Phys. Rev. A90, 043807 (2014). ArticleADS Google Scholar
Zhao, R.-R., Wang, D., Zhao, Y., Leng, Y.-X. & Li, R.-X. Self-compression of 1.8-μm pulses in gas-filled hollow-core fibers. Chin. Phys. B26, 104206 (2017). ArticleADS Google Scholar
Nagy, T., Forster, M. & Simon, P. Flexible hollow fiber for pulse compressors. Appl. Opt.47, 3264–3268 (2008). ArticleADS Google Scholar
Nagy, T., Pervak, V. & Simon, P. Optimal pulse compression in long hollow fibers. Opt. Lett.36, 4422–4424 (2011). ArticleADS Google Scholar
Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature530, 66 (2016). ArticleADS Google Scholar
Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2007).
Heyl, C. M. et al. Scale-invariant nonlinear optics in gases. Optica3, 75–81 (2016). Article Google Scholar
Tani, F., Köttig, F., Novoa, D., Keding, R. & Russell, P. S. Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers. Photon. Res.6, 84–88 (2018). Article Google Scholar
Kotsina, N. et al. Ultrafast molecular spectroscopy using a hollow-core photonic crystal fiber light source. J. Phys. Chem. Lett.10, 715–720 (2019). Article Google Scholar
Beaud, P., Hodel, W., Zysset, B. & Weber, H. Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber. IEEE J. Quantum Electron.23, 1938–1946 (1987). ArticleADS Google Scholar
Kodama, Y. & Hasegawa, A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron.23, 510–524 (1987). ArticleADS Google Scholar
Husakou, A. V. & Herrmann, J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett.87, 203901 (2001). ArticleADS Google Scholar
Hölzer, P. et al. Femtosecond nonlinear fiber optics in the ionization regime. Phys. Rev. Lett.107, 203901 (2011). ArticleADS Google Scholar
Saleh, M. F. & Biancalana, F. Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers. Phys. Rev. A84, 063838 (2011). ArticleADS Google Scholar
Fibich, G. & Gaeta, A. L. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett.25, 335–337 (2000). ArticleADS Google Scholar
Wirth, A. et al. Synthesized light transients. Science334, 195–200 (2011). ArticleADS Google Scholar
Erkintalo, M., Xu, Y. Q., Murdoch, S. G., Dudley, J. M. & Genty, G. Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs. Phys. Rev. Lett.109, 223904 (2012). ArticleADS Google Scholar
Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A51, 2602–2607 (1995). ArticleADS Google Scholar
Austin, D. R., de Sterke, C. M., Eggleton, B. J. & Brown, T. G. Dispersive wave blue-shift in supercontinuum generation. Opt. Express14, 11997–12007 (2006). ArticleADS Google Scholar
Tani, F., Travers, J. C. & Russell, P. S. Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber. J. Opt. Soc. Am. B31, 311–320 (2014). ArticleADS Google Scholar
Li, Q., Kutz, J. N. & Wai, P. K. A. Cascaded higher-order soliton for non-adiabatic pulse compression. J. Opt. Soc. Am. B27, 2180–2189 (2010). ArticleADS Google Scholar
Schenkel, B. et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett.28, 1987–1989 (2003). ArticleADS Google Scholar
Vozzi, C., Nisoli, M., Sansone, G., Stagira, S. & De Silvestri, S. Optimal spectral broadening in hollow-fiber compressor systems. Appl. Phys. B80, 285–289 (2005). ArticleADS Google Scholar
Ghotbi, M., Beutler, M. & Noack, F. Generation of 2.5 μJ vacuum ultraviolet pulses with sub-50 fs duration by noncollinear four-wave mixing in argon. Opt. Lett.35, 3492–3494 (2010). ArticleADS Google Scholar
Shi, L. et al. Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon. Phys. Rev. A88, 053825 (2013). ArticleADS Google Scholar
Zhou, H. et al. Efficient generation of vacuum and extreme ultraviolet pulses. Laser Phys. Lett.11, 025402 (2014). ArticleADS Google Scholar
Brahms, C. et al. Direct characterization of tuneable few-femtosecond dispersive-wave pulses in the deep UV. Opt. Lett.44, 731–734 (2019). ArticleADS Google Scholar
Ermolov, A., Valtna-Lukner, H., Travers, J. & Russell, P. S. Characterization of few-fs deep-UV dispersive waves by ultra-broadband transient-grating XFROG. Opt. Lett.41, 5535–5538 (2016). ArticleADS Google Scholar
Chang, Y. et al. Tunable VUV photochemistry using vacuum ultraviolet free electron laser combined with H-atom Rydberg tagging time-of-flight spectroscopy. Rev. Sci. Instrum.89, 063113 (2018). ArticleADS Google Scholar
Ayvazyan, V. et al. Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett.88, 104802 (2002). ArticleADS Google Scholar
Belli, F., Abdolvand, A., Travers, J. & J. Russell, P. St. J. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence. Phys. Rev. A97, 013814 (2018). ArticleADS Google Scholar
Sidorenko, P., Lahav, O., Avnat, Z. & Cohen, O. Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness. Optica3, 1320–1330 (2016). Article Google Scholar
Börzsönyi, A., Heiner, Z., Kalashnikov, M. P., Kovács, A. P. & Osvay, K. Dispersion measurement of inert gases and gas mixtures at 800 nm. Appl. Opt.47, 4856–4863 (2008). ArticleADS Google Scholar
Lehmeier, H., Leupacher, W. & Penzkofer, A. Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation. Opt. Commun.56, 67–72 (1985). ArticleADS Google Scholar
Kolesik, M. & Moloney, J. V. Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations. Phys. Rev. E70, 036604 (2004). ArticleADS Google Scholar
Geissler, M. et al. Light propagation in field-ionizing media: extreme nonlinear optics. Phys. Rev. Lett.83, 2930–2933 (1999). ArticleADS Google Scholar
Perelomov, A. M., Popov, V. S. & Terent’ev, M. V. Ionization of atoms in an alternating electric field. J. Exp. Theor. Phys.23, 924 (1966). ADS Google Scholar
Ilkov, F. A., Decker, J. E. & Chin, S. L. Ionization of atoms in the tunnelling regime with experimental evidence using Hg atoms. J. Phys. B25, 4005 (1992). ArticleADS Google Scholar