High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres (original) (raw)

References

  1. Ippen, E. P. Low-power quasi-cw raman oscillator. Appl. Phys. Lett. 16, 303–305 (1970).
    Article ADS Google Scholar
  2. Miles, R. B., Laufer, G. & Bjorklund, G. C. Coherent anti-Stokes Raman scattering in a hollow dielectric waveguide. Appl. Phys. Lett. 30, 417–419 (1977).
    Article ADS Google Scholar
  3. Durfee, C. G., Backus, S., Murnane, M. M. & Kapteyn, H. C. Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves. Opt. Lett. 22, 1565–1567 (1997).
    Article ADS Google Scholar
  4. Kida, Y. & Imasaka, T. Optical parametric amplification of a supercontinuum in a gas. Appl. Phys. B 116, 673–680 (2014).
    Article ADS Google Scholar
  5. Misoguti, L. et al. Generation of broadband VUV light using third-order cascaded processes. Phys. Rev. Lett. 87, 013601 (2001).
    Article ADS Google Scholar
  6. Wagner, N. L. et al. Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping. Phys. Rev. Lett. 93, 173902 (2004).
    Article ADS Google Scholar
  7. Anderson, P. N., Horak, P., Frey, J. G. & Brocklesby, W. S. High-energy laser-pulse self-compression in short gas-filled fibers. Phys. Rev. A 89, 013819 (2014).
    Article ADS Google Scholar
  8. Gao, X. et al. Ionization-assisted spatiotemporal localization in gas-filled capillaries. Opt. Lett. 43, 3112–3115 (2018).
    Article ADS Google Scholar
  9. Durfee, C. G. et al. Phase matching of high-order harmonics in hollow waveguides. Phys. Rev. Lett. 83, 2187–2190 (1999).
    Article ADS Google Scholar
  10. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).
    Article ADS MathSciNet Google Scholar
  11. Chemnitz, M. et al. Hybrid soliton dynamics in liquid-core fibres. Nat. Commun. 8, 42 (2017).
    Article ADS Google Scholar
  12. Nisoli, M., Silvestri, S. D. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).
    Article ADS Google Scholar
  13. Nisoli, M. et al. Toward a terawatt-scale sub-10-fs laser technology. IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).
    Article ADS Google Scholar
  14. Shabat, A. & Zakharov, V. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62 (1972).
    ADS MathSciNet Google Scholar
  15. Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973).
    Article ADS Google Scholar
  16. Mollenauer, L. F., Stolen, R. H., Gordon, J. P. & Tomlinson, W. J. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt. Lett. 8, 289–291 (1983).
    Article ADS Google Scholar
  17. Im, S.-J., Husakou, A. & Herrmann, J. High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs. Opt. Express 18, 5367–5374 (2010).
    Article ADS Google Scholar
  18. Joly, N. Y. et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Phys. Rev. Lett. 106, 203901 (2011).
    Article ADS Google Scholar
  19. Mak, K. F., Travers, J. C., Joly, N. Y., Abdolvand, A. & Russell, P. S. J. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber. Opt. Lett. 38, 3592–3595 (2013).
    Article ADS Google Scholar
  20. Balciunas, T. et al. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Commun. 6, 6117 (2015).
    Article ADS Google Scholar
  21. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).
    Article ADS Google Scholar
  22. Wai, P. K. A., Menyuk, C. R., Lee, Y. C. & Chen, H. H. Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett. 11, 464–466 (1986).
    Article ADS Google Scholar
  23. Mak, K. F., Travers, J. C., Hölzer, P., Joly, N. Y. & Russell, P. S. J. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF. Opt. Express 21, 10942–10953 (2013).
    Article ADS Google Scholar
  24. Belli, F., Abdolvand, A., Chang, W., Travers, J. C. & Russell, P. S. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica 2, 292–300 (2015).
    Article Google Scholar
  25. Ermolov, A., Mak, K. F., Frosz, M. H., Travers, J. C. & Russell, P. S. J. Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton–plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Phys. Rev. A 92, 033821 (2015).
    Article ADS Google Scholar
  26. Bromberger, H. et al. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. Lett. 107, 091101 (2015).
    Article ADS Google Scholar
  27. Köttig, F., Tani, F., Biersach, C. M., Travers, J. C. & Russell, P. S. Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica 4, 1272–1276 (2017).
    Article Google Scholar
  28. Travers, J. C., Chang, W., Nold, J., Joly, N. Y. & Russell, P. S. J. Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B 28, A11–A26 (2011).
    Article Google Scholar
  29. Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A. & Travers, J. C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photon. 8, 278–286 (2014).
    Article ADS Google Scholar
  30. Ouzounov, D. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003).
    Article ADS Google Scholar
  31. Markos, C., Travers, J. C., Abdolvand, A., Eggleton, B. J. & Bang, O. Hybrid photonic-crystal fiber. Rev. Mod. Phys. 89, 045003 (2017).
    Article ADS Google Scholar
  32. Saleh, M. F. & Biancalana, F. Soliton dynamics in gas-filled hollow-core photonic crystal fibers. J. Opt. 18, 013002 (2016).
    Article ADS Google Scholar
  33. Marcatili, E. & Schmeltzer, R. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43, 1783–1809 (1964).
    Article Google Scholar
  34. Robinson, J. et al. The generation of intense, transform-limited laser pulses with tunable duration from 6 to 30 fs in a differentially pumped hollow fibre. Appl. Phys. B 85, 525–529 (2006).
    Article ADS Google Scholar
  35. Bohman, S., Suda, A., Kanai, T., Yamaguchi, S. & Midorikawa, K. Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow-fiber pulse compression. Opt. Lett. 35, 1887–1889 (2010).
    Article ADS Google Scholar
  36. Böhle, F. et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett. 11, 095401 (2014).
    Article ADS Google Scholar
  37. Cardin, V. et al. 0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression. Appl. Phys. Lett. 107, 181101 (2015).
    Article ADS Google Scholar
  38. Silva, F. et al. Strategies for achieving intense single-cycle pulses with in-line post-compression setups. Opt. Lett. 43, 337–340 (2018).
    Article ADS Google Scholar
  39. Jeong, Y.-G. et al. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Sci. Rep. 8, 11794 (2018).
    Article ADS Google Scholar
  40. Husakou, A. & Herrmann, J. Soliton-effect pulse compression in the single-cycle regime in broadband dielectric-coated metallic hollow waveguides. Opt. Express 17, 17636–17644 (2009).
    Article ADS Google Scholar
  41. López-Zubieta, B. A., Jarque, E. C., Sola, Í. J. & Roman, J. S. Theoretical analysis of single-cycle self-compression of near infrared pulses using high-spatial modes in capillary fibers. Opt. Express 26, 6345–6350 (2018).
    Article ADS Google Scholar
  42. López-Zubieta, B. A., Jarque, E. C., Sola, Í. J. & Roman, J. S. Spatiotemporal-dressed optical solitons in hollow-core capillaries. OSA Continuum 1, 930–938 (2018).
    Article Google Scholar
  43. Voronin, A. A. & Zheltikov, A. M. Subcycle solitonic breathers. Phys. Rev. A 90, 043807 (2014).
    Article ADS Google Scholar
  44. Zhao, R.-R., Wang, D., Zhao, Y., Leng, Y.-X. & Li, R.-X. Self-compression of 1.8-μm pulses in gas-filled hollow-core fibers. Chin. Phys. B 26, 104206 (2017).
    Article ADS Google Scholar
  45. Nagy, T., Forster, M. & Simon, P. Flexible hollow fiber for pulse compressors. Appl. Opt. 47, 3264–3268 (2008).
    Article ADS Google Scholar
  46. Nagy, T., Pervak, V. & Simon, P. Optimal pulse compression in long hollow fibers. Opt. Lett. 36, 4422–4424 (2011).
    Article ADS Google Scholar
  47. Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66 (2016).
    Article ADS Google Scholar
  48. Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2007).
  49. Heyl, C. M. et al. Scale-invariant nonlinear optics in gases. Optica 3, 75–81 (2016).
    Article Google Scholar
  50. Tani, F., Köttig, F., Novoa, D., Keding, R. & Russell, P. S. Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers. Photon. Res. 6, 84–88 (2018).
    Article Google Scholar
  51. Kotsina, N. et al. Ultrafast molecular spectroscopy using a hollow-core photonic crystal fiber light source. J. Phys. Chem. Lett. 10, 715–720 (2019).
    Article Google Scholar
  52. Beaud, P., Hodel, W., Zysset, B. & Weber, H. Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber. IEEE J. Quantum Electron. 23, 1938–1946 (1987).
    Article ADS Google Scholar
  53. Kodama, Y. & Hasegawa, A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron. 23, 510–524 (1987).
    Article ADS Google Scholar
  54. Husakou, A. V. & Herrmann, J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001).
    Article ADS Google Scholar
  55. Hölzer, P. et al. Femtosecond nonlinear fiber optics in the ionization regime. Phys. Rev. Lett. 107, 203901 (2011).
    Article ADS Google Scholar
  56. Saleh, M. F. & Biancalana, F. Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers. Phys. Rev. A 84, 063838 (2011).
    Article ADS Google Scholar
  57. Fibich, G. & Gaeta, A. L. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 25, 335–337 (2000).
    Article ADS Google Scholar
  58. Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).
    Article ADS Google Scholar
  59. Erkintalo, M., Xu, Y. Q., Murdoch, S. G., Dudley, J. M. & Genty, G. Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs. Phys. Rev. Lett. 109, 223904 (2012).
    Article ADS Google Scholar
  60. Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995).
    Article ADS Google Scholar
  61. Austin, D. R., de Sterke, C. M., Eggleton, B. J. & Brown, T. G. Dispersive wave blue-shift in supercontinuum generation. Opt. Express 14, 11997–12007 (2006).
    Article ADS Google Scholar
  62. Tani, F., Travers, J. C. & Russell, P. S. Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber. J. Opt. Soc. Am. B 31, 311–320 (2014).
    Article ADS Google Scholar
  63. Li, Q., Kutz, J. N. & Wai, P. K. A. Cascaded higher-order soliton for non-adiabatic pulse compression. J. Opt. Soc. Am. B 27, 2180–2189 (2010).
    Article ADS Google Scholar
  64. Schenkel, B. et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. 28, 1987–1989 (2003).
    Article ADS Google Scholar
  65. Vozzi, C., Nisoli, M., Sansone, G., Stagira, S. & De Silvestri, S. Optimal spectral broadening in hollow-fiber compressor systems. Appl. Phys. B 80, 285–289 (2005).
    Article ADS Google Scholar
  66. Ghotbi, M., Beutler, M. & Noack, F. Generation of 2.5 μJ vacuum ultraviolet pulses with sub-50 fs duration by noncollinear four-wave mixing in argon. Opt. Lett. 35, 3492–3494 (2010).
    Article ADS Google Scholar
  67. Shi, L. et al. Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon. Phys. Rev. A 88, 053825 (2013).
    Article ADS Google Scholar
  68. Zhou, H. et al. Efficient generation of vacuum and extreme ultraviolet pulses. Laser Phys. Lett. 11, 025402 (2014).
    Article ADS Google Scholar
  69. Brahms, C. et al. Direct characterization of tuneable few-femtosecond dispersive-wave pulses in the deep UV. Opt. Lett. 44, 731–734 (2019).
    Article ADS Google Scholar
  70. Ermolov, A., Valtna-Lukner, H., Travers, J. & Russell, P. S. Characterization of few-fs deep-UV dispersive waves by ultra-broadband transient-grating XFROG. Opt. Lett. 41, 5535–5538 (2016).
    Article ADS Google Scholar
  71. Chang, Y. et al. Tunable VUV photochemistry using vacuum ultraviolet free electron laser combined with H-atom Rydberg tagging time-of-flight spectroscopy. Rev. Sci. Instrum. 89, 063113 (2018).
    Article ADS Google Scholar
  72. Ayvazyan, V. et al. Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88, 104802 (2002).
    Article ADS Google Scholar
  73. Belli, F., Abdolvand, A., Travers, J. & J. Russell, P. St. J. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence. Phys. Rev. A 97, 013814 (2018).
    Article ADS Google Scholar
  74. Sidorenko, P., Lahav, O., Avnat, Z. & Cohen, O. Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness. Optica 3, 1320–1330 (2016).
    Article Google Scholar
  75. Börzsönyi, A., Heiner, Z., Kalashnikov, M. P., Kovács, A. P. & Osvay, K. Dispersion measurement of inert gases and gas mixtures at 800 nm. Appl. Opt. 47, 4856–4863 (2008).
    Article ADS Google Scholar
  76. Lehmeier, H., Leupacher, W. & Penzkofer, A. Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation. Opt. Commun. 56, 67–72 (1985).
    Article ADS Google Scholar
  77. Kolesik, M. & Moloney, J. V. Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations. Phys. Rev. E 70, 036604 (2004).
    Article ADS Google Scholar
  78. Geissler, M. et al. Light propagation in field-ionizing media: extreme nonlinear optics. Phys. Rev. Lett. 83, 2930–2933 (1999).
    Article ADS Google Scholar
  79. Perelomov, A. M., Popov, V. S. & Terent’ev, M. V. Ionization of atoms in an alternating electric field. J. Exp. Theor. Phys. 23, 924 (1966).
    ADS Google Scholar
  80. Ilkov, F. A., Decker, J. E. & Chin, S. L. Ionization of atoms in the tunnelling regime with experimental evidence using Hg atoms. J. Phys. B 25, 4005 (1992).
    Article ADS Google Scholar

Download references