Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks (original) (raw)
Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature506, 71–75 (2014). ArticleADS Google Scholar
Nicholson, T. L. et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun.6, 6896 (2015). ArticleADS Google Scholar
Huntemann, N., Sanner, C., Lipphardt, B., Tamm, C. & Peik, E. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett.116, 063001 (2016). ArticleADS Google Scholar
McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature564, 87–90 (2018). ArticleADS Google Scholar
Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett.123, 033201 (2019). ArticleADS Google Scholar
Takano, T. et al. Geopotential measurements with synchronously linked optical lattice clocks. Nat. Photon.10, 662–666 (2016). ArticleADS Google Scholar
Riehle, F. Towards a redefinition of the second based on optical atomic clocks. C. R. Phys.16, 506–515 (2015). Article Google Scholar
Huntemann, N. et al. Improved limit on a temporal variation of m p/m e from comparisons of Yb+ and Cs atomic clocks. Phys. Rev. Lett.113, 210802 (2014). ArticleADS Google Scholar
Godun, R. M. et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Phys. Rev. Lett. 113, 210801 (2014). ArticleADS Google Scholar
Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science319, 1808–1812 (2008). ArticleADS Google Scholar
Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science329, 1630–1633 (2010). ArticleADS Google Scholar
Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys.14, 437–441 (2018). Article Google Scholar
Sanner, C. et al. Optical clock comparison test of Lorentz symmetry. Nature567, 204–208 (2019). ArticleADS Google Scholar
Delva, P. et al. Test of special relativity using a fiber network of optical clocks. Phys. Rev. Lett.118, 221102 (2017). ArticleADS Google Scholar
Kolkowitz, S. et al. Gravitational wave detection with optical lattice atomic clocks. Phys. Rev. D94, 124043 (2016). ArticleADS Google Scholar
Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys.10, 933–936 (2014). Article Google Scholar
Arvanitaki, A., Huang, J. & Van Tilburg, K. Searching for dilaton dark matter with atomic clocks. Phys. Rev. D91, 015015 (2015). ArticleADS Google Scholar
Itano, W. M. et al. Quantum projection noise: population fluctuations in two-level systems. Phys. Rev. A47, 3554–3570 (1993). ArticleADS Google Scholar
Schioppo, M. et al. Ultra-stable optical clock with two cold-atom ensembles. Nat. Photon.11, 48–52 (2017). ArticleADS Google Scholar
Nicholson, T. L. et al. Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s. Phys. Rev. Lett.109, 230801 (2012). ArticleADS Google Scholar
Al-Masoudi, A., Dörscher, S., Häfner, S., Sterr, U. & Lisdat, C. Noise and instability of an optical lattice clock. Phys. Rev. A92, 063814 (2015). ArticleADS Google Scholar
Campbell, S. L. et al. A Fermi-degenerate three-dimensional optical lattice clock. Science358, 90–94 (2017). ArticleADS Google Scholar
Kolkowitz, S. et al. Spin–orbit-coupled fermions in an optical lattice clock. Nature542, 66–70 (2017). ArticleADS Google Scholar
Zhang, X. et al. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. Science345, 1467–1473 (2014). ArticleADS Google Scholar
Martin, M. J. et al. A quantum many-body spin system in an optical lattice clock. Science341, 632–636 (2013). ArticleADSMathSciNet Google Scholar
Bishof, M., Zhang, X., Martin, M. J. & Ye, J. Optical spectrum analyzer with quantum-limited noise floor. Phys. Rev. Lett.111, 093604 (2013). ArticleADS Google Scholar
Häfner, S. et al. 8 × 10−17 fractional laser frequency instability with a long room-temperature cavity. Opt. Lett.40, 2112–2115 (2015). ArticleADS Google Scholar
Kessler, T. et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat. Photon.6, 687–692 (2012). ArticleADS Google Scholar
Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett.118, 263202 (2017). ArticleADS Google Scholar
Zhang, W. et al. Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K. Phys. Rev. Lett.119, 243601 (2017). ArticleADS Google Scholar
Robinson, J. M. et al. Crystaline optical cavity at 4 K with thermal noise limited instability and ultralow drift. Optica6, 240–243 (2019). Article Google Scholar
Boyd, M. M. et al. Nuclear spin effects in optical lattice clocks. Phys. Rev. A76, 022510 (2007). ArticleADS Google Scholar
Dick, J. G. Local oscillator induced instabilities in trapped ion frequency standards. In Proceedings of the 19th Annual Precise Time and Time Interval Meeting, 133–147 (US Naval Observatory, 1988); https://tycho.usno.navy.mil/ptti/1987papers/Vol%2019_13.pdf
Santarelli, G. et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control45, 887 (1998). Article Google Scholar
Bothwell, T. et al. JILA Sr1 optical lattice clock with uncertainty of 2.0 × 10−18. Preprint at https://arxiv.org/abs/1906.06004 (2019).
Takamoto, M., Takano, T. & Katori, H. Frequency comparison of optical lattice clocks beyond the Dick limit. Nat. Photon. 5, 288–292 (2011). ArticleADS Google Scholar
Ushijima, I., Takamoto, M., Das, M., Ohkubo, T. & Katori, H. Cryogenic optical lattice clocks. Nat. Photon.9, 185–189 (2015). ArticleADS Google Scholar
Cole, G. D., Zhang, W., Martin, M. J., Ye, J. & Aspelmeyer, M. Tenfold reduction of Brownian noise in high-reflectivity optical coatings. Nat. Photon.7, 644–650 (2013). ArticleADS Google Scholar
Hutson, R. B., Goban, A., Marti, G. E. & Ye, J. Engineering quantum states of matter for atomic clocks in shallow optical lattices. Preprint at https://arxiv.org/abs/1903.02498 (2019).
Marti, G. E. et al. Imaging optical frequencies with 100 μHz precision and 1.1 μm resolution. Phys. Rev. Lett.120, 103201 (2018). ArticleADS Google Scholar
Zhang, W. et al. Reduction of residual amplitude modulation to 1 × 10−6 for frequency modulation and laser stabilization. Opt. Lett.39, 1980–1983 (2014). ArticleADS Google Scholar
Milner, W. R. et al. Demonstration of a time scale based on a stable optical carrier. Preprint at https://arxiv.org/abs/1907.03184 (2019).
Hänsel, W. et al. All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation. Appl. Phys. B123, 41 (2017). ArticleADS Google Scholar
Hänsel, W., Giunta, M., Fischer, M., Lezius, M. & Holzwarth, R. Rapid electro-optic control of the carrier-envelope-offset frequency for ultra-low noise frequency combs. In Proceedings of the Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium 128–129 (IEEE, 2017).
Giunta, M., Hänsel, W., Fischer, M., Lezius, M. & Holzwarth, R. Sub-mHz spectral purity transfer for next generation strontium optical atomic clocks. In Proceedings of the Conference on Lasers and Electro-Optics SM1L.5 (OSA, 2018).
Ma, L. S., Jungner, P., Ye, J. & Hall, J. L. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett.19, 1777–1779 (1994). ArticleADS Google Scholar
Falke, S., Misera, M., Sterr, U. & Lisdat, C. Delivering pulsed and phase stable light to atoms of an optical clock. Appl. Phys. B107, 301–311 (2012). ArticleADS Google Scholar
Howe, D. The total deviation approach to long-term characterization of frequency stability. IEEE Trans. Ultrason. Ferroelectr. Freq. Control47, 1102–1110 (2000). Article Google Scholar