Extreme-ultraviolet frequency combs for precision metrology and attosecond science (original) (raw)
References
Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron.6, 1173–1185 (2000). ADS Google Scholar
Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A104, 5660–5694 (2000). Google Scholar
Reichert, J., Holzwarth, R., Udem, T. H. & Hänsch, T. W. Measuring the frequency of light with mode-locked lasers. Opt. Commun.172, 59–68 (1999). ADS Google Scholar
Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B69, 327–332 (1999). ADS Google Scholar
Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett.85, 740–743 (2000). ADS Google Scholar
Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science288, 635–639 (2000). ADS Google Scholar
Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys.72, 545–591 (2000). ADS Google Scholar
Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free–free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett.42, 1127–1130 (1979). ADS Google Scholar
Macklin, J. J., Kmetec, J. D. & Gordon, C. L. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett.70, 766–769 (1993). ADS Google Scholar
Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett.71, 1994–1997 (1993). ADS Google Scholar
Lewenstein, M. et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A49, 2117–2132 (1994). ADS Google Scholar
Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys.81, 163–234 (2009). ADS Google Scholar
Hentschel, M. et al. Attosecond metrology. Nature414, 509–513 (2001). ADS Google Scholar
Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett.88, 173903 (2002). ADS Google Scholar
Kienberger, R. et al. Atomic transient recorder. Nature427, 817–821 (2004). ADS Google Scholar
Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature446, 627–632 (2007). ADS Google Scholar
Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science312, 424–427 (2006). ADS Google Scholar
Schell, F. et al. Molecular orbital imprint in laser-driven electron recollision. Sci. Adv.4, eaap8148 (2018). ADS Google Scholar
Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature449, 1029–1032 (2007). ADS Google Scholar
Locher, R. et al. Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry. Optica2, 405–410 (2015). ADS Google Scholar
Chen, C. et al. Distinguishing attosecond electron–electron scattering and screening in transition metals. Proc. Natl Acad. Sci. USA114, E5300–E5307 (2017). Google Scholar
Ambrosio, M. J. & Thumm, U. Electronic structure effects in spatiotemporally resolved photoemission interferograms of copper surfaces. Phys. Rev. A96, 051403 (2017). ADS Google Scholar
Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science353, 62–67 (2016). MathSciNetMATHADS Google Scholar
Stockman, M. I., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nat. Photon.1, 539–544 (2007). ADS Google Scholar
Förg, B. et al. Attosecond nanoscale near-field sampling. Nat. Commun.7, 11717 (2016). ADS Google Scholar
Chew, S. H. et al. Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses. Appl. Phys. Lett.100, 051904 (2012). ADS Google Scholar
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature416, 233–237 (2002). ADS Google Scholar
Ye, J. & Cundiff, S. T. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).
Riehle, F., Gill, P., Arias, F. & Robertsson, L. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia55, 188–200 (2018). ADS Google Scholar
Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon.13, 714–719 (2019). ADS Google Scholar
Marian, A., Stowe, M. C., Lawall, J. R., Felinto, D. & Ye, J. United time-frequency spectroscopy for dynamics and global structure. Science306, 2063–2068 (2004). ADS Google Scholar
Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science311, 1595–1599 (2006). ADS Google Scholar
Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon.13, 146–157 (2019). ADS Google Scholar
Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature436, 234–237 (2005). ADS Google Scholar
Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett.94, 193201 (2005). ADS Google Scholar
Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon.8, 530–536 (2014). ADS Google Scholar
Jones, R. J. & Ye, J. Femtosecond pulse amplification by coherent addition in a passive optical cavity. Opt. Lett.27, 1848–1850 (2002). ADS Google Scholar
Jones, R. J. & Ye, J. High-repetition-rate coherent femtosecond pulse amplification with an external passive optical cavity. Opt. Lett.29, 2812–2814 (2004). ADS Google Scholar
Mills, A. K., Hammond, T. J., Lam, M. H. C. & Jones, D. J. XUV frequency combs via femtosecond enhancement cavities. J. Phys. B45, 142001 (2012). ADS Google Scholar
Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature482, 68–71 (2012). ADS Google Scholar
Ozawa, A. & Kobayashi, Y. vuv frequency-comb spectroscopy of atomic xenon. Phys. Rev. A87, 022507 (2013). ADS Google Scholar
Mills, A. K. et al. An XUV source using a femtosecond enhancement cavity for photoemission spectroscopy. Proc. SPIE9512, 95121I (2015).
Mills, A. K. et al. Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy. Rev. Sci. Instrum.90, 083001 (2019). ADS Google Scholar
Corder, C. et al. Ultrafast extreme ultraviolet photoemission without space charge. Struct. Dyn.5, 054301 (2018). Google Scholar
Saule, T. et al. High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate. Nat. Commun.10, 458 (2019). ADS Google Scholar
Siegman, A. E. Lasers (University Science Books, 1986).
Thorpe, M. J., Jones, R. J., Moll, K. D., Ye, J. & Lalezari, R. Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. Opt. Express13, 882–888 (2005). ADS Google Scholar
Ozawa, A. et al. High harmonic frequency combs for high resolution spectroscopy. Phys. Rev. Lett.100, 253901 (2008). ADS Google Scholar
Lee, J., Carlson, D. R. & Jones, R. J. Optimizing intracavity high harmonic generation for XUV fs frequency combs. Opt. Express19, 23315–23326 (2011). ADS Google Scholar
Hartl, I. et al. Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 × 1014 W/cm2 peak intensity at 136 MHz. Opt. Lett.32, 2870–2872 (2007). ADS Google Scholar
Eidam, T., Röser, F., Schmidt, O., Limpert, J. & Tünnermann, A. 57 W, 27 fs pulses from a fiber laser system using nonlinear compression. Appl. Phys. B92, 9 (2008). ADS Google Scholar
Porat, G. et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photon.12, 387–391 (2018). ADS Google Scholar
Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photon.7, 608–612 (2013). ADS Google Scholar
Ozawa, A., Zhao, Z., Kuwata-Gonokami, M. & Kobayashi, Y. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation. Opt. Express23, 15107–15118 (2015). ADS Google Scholar
Carstens, H. et al. High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica3, 366–369 (2016). ADS Google Scholar
Carstens, H. et al. Megawatt-scale average-power ultrashort pulses in an enhancement cavity. Opt. Lett.39, 2595–2598 (2014). ADS Google Scholar
Carstens, H. et al. Large-mode enhancement cavities. Opt. Express21, 11606–11617 (2013). ADS Google Scholar
Lilienfein, N. et al. Enhancement cavities for few-cycle pulses. Opt. Lett.42, 271–274 (2017). ADS Google Scholar
Jones, R. J., Thomann, I. & Ye, J. Precision stabilization of femtosecond lasers to high-finesse optical cavities. Phys. Rev. A69, 051803 (2004). ADS Google Scholar
Schliesser, A., Gohle, C., Udem, T. & Hänsch, T. W. Complete characterization of a broadband high-finesse cavity using an optical frequency comb. Opt. Express14, 5975–5983 (2006). ADS Google Scholar
Pupeza, I. et al. Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry. Opt. Express18 26184–26195 (2010).
Hammond, T. J., Mills, A. K. & Jones, D. J. Simple method to determine dispersion of high-finesse optical cavities. Opt. Express17, 8998–9005 (2009). ADS Google Scholar
Holzberger, S. et al. Femtosecond enhancement cavities in the nonlinear regime. Phys. Rev. Lett.115, 023902 (2015). ADS Google Scholar
Högner, M. et al. Cavity-enhanced noncollinear high-harmonic generation. Opt. Express27, 19675–19691 (2019). ADS Google Scholar
Holzberger, S. et al. Enhancement cavities for zero-offset-frequency pulse trains. Opt. Lett.40, 2165–2168 (2015). ADS Google Scholar
Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express19, 23483–23493 (2011). ADS Google Scholar
Hammond, T. J., Mills, A. K. & Jones, D. J. Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield. Opt. Express19, 24871–24883 (2011). ADS Google Scholar
Moll, K. D., Jones, R. J. & Ye, J. Nonlinear dynamics inside femtosecond enhancement cavities. Opt. Express13, 1672–1678 (2005). ADS Google Scholar
Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett.107, 183903 (2011). ADS Google Scholar
Carlson, D. R., Lee, J., Mongelli, J., Wright, E. M. & Jones, R. J. Intracavity ionization and pulse formation in femtosecond enhancement cavities. Opt. Lett.36, 2991–2993 (2011). ADS Google Scholar
Lilienfein, N. et al. Temporal solitons in free-space femtosecond enhancement cavities. Nat. Photon.13, 214–218 (2019). ADS Google Scholar
Kalashnikov, V. L., Gohle, C. & Udem, T. Maximization of the ultrashort pulse power stored in a passive resonator synchronously pumped by a femtosecond oscillator. In Advanced Solid-State Photonics, Technical Digest 652–656 (Optical Society of America, 2005); https://doi.org/10.1364/ASSP.2005.MB2
Moll, K. D., Jones, R. J. & Ye, J. Output coupling methods for cavity-based high-harmonic generation. Opt. Express14, 8189–8197 (2006). ADS Google Scholar
Yost, D. C., Schibli, T. R. & Ye, J. Efficient output coupling of intracavity high-harmonic generation. Opt. Lett.33, 1099–1101 (2008). ADS Google Scholar
Högner, M., Saule, T. & Pupeza, I. Efficiency of cavity-enhanced high harmonic generation with geometric output coupling. J. Phys. B52, 075401 (2019). ADS Google Scholar
Pupeza, I. et al. Cavity-enhanced high-harmonic generation with spatially tailored driving fields. Phys. Rev. Lett.112, 103902 (2014). ADS Google Scholar
Zhang, C. et al. Noncollinear enhancement cavity for record-high out-coupling efficiency of an extreme-UV frequency comb. Phys. Rev. Lett.125, 093902 (2020). ADS Google Scholar
Putnam, W. P., Schimpf, D. N., Abram, G. & Kärtner, F. X. Bessel–Gauss beam enhancement cavities for high-intensity applications. Opt. Express20, 24429–24443 (2012). ADS Google Scholar
Pronin, O. et al. Ultrabroadband efficient intracavity XUV output coupler. Opt. Express19, 10232–10240 (2011). ADS Google Scholar
Pupeza, I., Fill, E. E. & Krausz, F. Low-loss VIS/IR-XUV beam splitter for high-power applications. Opt. Express19, 12108–12118 (2011). ADS Google Scholar
Jones, R. J. & Diels, J.-C. Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis. Phys. Rev. Lett.86, 3288–3291 (2001). ADS Google Scholar
Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B31, 97–105 (1983). ADS Google Scholar
Schibli, T. R. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nat. Photon.2, 355–359 (2008). ADS Google Scholar
Li, X. et al. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools. Rev. Sci. Instrum.87, 093114 (2016). ADS Google Scholar
Yost, D. C. et al. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nat. Phys.5, 815–820 (2009). Google Scholar
Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett.118, 263202 (2017). ADS Google Scholar
Bergeson, S. D. et al. Measurement of the He ground state lamb shift via the two-photon 11S−21S transition. Phys. Rev. Lett.80, 3475–3478 (1998). ADS Google Scholar
Eyler, E. E. et al. Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy. Eur. Phys. J. D48, 43–55 (2008). ADS Google Scholar
Herrmann, M. et al. Feasibility of coherent xuv spectroscopy on the 1S−2S transition in singly ionized helium. Phys. Rev. A79, 052505 (2009). ADS Google Scholar
Nauta, J. et al. Towards precision measurements on highly charged ions using a high harmonic generation frequency comb. Nucl. Instrum. Methods Phys. Res. B408, 285–288 (2017). ADS Google Scholar
von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A56, 277 (2020).
Ye, J., Ma, L. S. & Hall, J. L. Molecular iodine clock. Phys. Rev. Lett.87, 270801 (2001). Google Scholar
von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D74, 146 (2020). ADS Google Scholar
Hellmann, S., Rossnagel, K., Marczynski-Bühlow, M. & Kipp, L. Vacuum space-charge effects in solid-state photoemission. Phys. Rev. B79, 035402 (2009). ADS Google Scholar
Buckanie, N. M. et al. Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses. J. Phys. Condens. Matter21, 314003 (2009). Google Scholar
Yamamoto, S. & Matsuda, I. Time-resolved photoelectron spectroscopies using synchrotron radiation: past, present, and future. J. Phys. Soc. Jpn82, 021003 (2013). ADS Google Scholar
Na, M. X. et al. Direct determination of mode-projected electron–phonon coupling in the time domain. Science366, 1231–1236 (2019). ADS Google Scholar
Iwasawa, H. et al. Rotatable high-resolution ARPES system for tunable linear-polarization geometry. J. Synchrotron Radiat.24, 836–841 (2017). Google Scholar
Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem.2, 82–94 (2018).
Schoetz, J. et al. Perspective on petahertz electronics and attosecond nanoscopy. ACS Photon.6, 3057–3069 (2019). Google Scholar
Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science292, 1689–1692 (2001). ADS Google Scholar
Muller, H. G. Reconstruction of attosecond harmonic beating by interference of two-photon transitions. Appl. Phys. B74, s17–s21 (2002). ADS Google Scholar
Isinger, M. et al. Photoionization in the time and frequency domain. Science358, 893–896 (2017). ADS Google Scholar
Högner, M., Tosa, V. & Pupeza, I. Generation of isolated attosecond pulses with enhancement cavities—a theoretical study. New J. Phys.19, 033040 (2017). ADS Google Scholar
Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett.61, 181–186 (2003). ADS Google Scholar
Berengut, J. C. & Flambaum, V. V. Testing time-variation of fundamental constants using a 229Th nuclear clock. Nucl. Phys. News20, 19–22 (2010). Google Scholar
Cilento, F. et al. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates. Sci. Adv.4, eaar1998 (2018). ADS Google Scholar
Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature471, 490–493 (2011). ADS Google Scholar
Boschini, F. et al. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Nat. Mater.17, 416–420 (2018). ADS Google Scholar
Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photon.8, 205–213 (2014). ADS Google Scholar
Geneaux, R., Marroux, H. J. B., Guggenmos, A., Neumark, D. M. & Leone, S. R. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Phil. Trans. R. Soc. A377, 20170463 (2019). ADS Google Scholar
Marangos, J. P. Development of high harmonic generation spectroscopy of organic molecules and biomolecules. J. Phys. B49, 132001 (2016). ADS Google Scholar
Rothhardt, J., Tadesse, G. K., Eschen, W. & Limpert, J. Table-top nanoscale coherent imaging with XUV light. J. Opt.20, 113001 (2018). ADS Google Scholar
Gaida, C. et al. High-power frequency comb at 2 μm wavelength emitted by a Tm-doped fiber laser system. Opt. Lett.43, 5178–5181 (2018). ADS Google Scholar
Scoles, G. et al. Atomic and Molecular Beam Methods Vol. I (Oxford Univ. Press, 1988).
Takahashi, E. J., Nabekawa, Y. & Midorikawa, K. Low-divergence coherent soft X-ray source at 13nm by high-order harmonics. Appl. Phys. Lett.84, 4–6 (2004). ADS Google Scholar
Takahashi, E. J. et al. Generation of strong optical field in soft X-ray region by using high-order harmonics. IEEE J. Sel. Top. Quantum Electron.10, 1315–1328 (2004). ADS Google Scholar
Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett.82, 1668–1671 (1999). ADS Google Scholar
Ding, C. et al. High flux coherent super-continuum soft X-ray source driven by a single-stage, 10mJ, Ti:sapphire amplifier-pumped OPA. Opt. Express22, 6194–6202 (2014). ADS Google Scholar
Lorek, E. et al. High-order harmonic generation using a high-repetition-rate turnkey laser. Rev. Sci. Instrum.85, 123106 (2014). ADS Google Scholar
Rothhardt, J. et al. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules. Opt. Express24, 18133–18147 (2016). ADS Google Scholar
Klas, R. et al. Table-top milliwatt-class extreme ultraviolet high harmonic light source. Optica3, 1167–1170 (2016). ADS Google Scholar
Rothhardt, J. et al. 53W average power few-cycle fiber laser system generating soft X rays up to the water window. Opt. Lett.39, 5224–5227 (2014). ADS Google Scholar
Rothhardt, J. et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime. New J. Phys.16, 033022 (2014). ADS Google Scholar
Puppin, M. et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev. Sci. Instrum.90, 023104 (2019). ADS Google Scholar
Hädrich, S. et al. High photon flux table-top coherent extreme-ultraviolet source. Nat. Photon.8, 779–783 (2014). ADS Google Scholar
Chiang, C.-T. et al. Boosting laboratory photoelectron spectroscopy by megahertz high-order harmonics. New J. Phys.17, 013035 (2015). ADS Google Scholar
Zhao, Z. & Kobayashi, Y. Realization of a mW-level 10.7-eV (_λ_=115.6nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz. Opt. Express25, 13517–13526 (2017). ADS Google Scholar
Emaury, F., Diebold, A., Saraceno, C. J. & Keller, U. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica2, 980–984 (2015). ADS Google Scholar
Hädrich, S. et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl.4, e320–e320 (2015). Google Scholar
Vernaleken, A. et al. Single-pass high-harmonic generation at 20.8MHz repetition rate. Opt. Lett.36, 3428–3430 (2011). ADS Google Scholar
Bernhardt, B. et al. Vacuum ultraviolet frequency combs generated by a femtosecond enhancement cavity in the visible. Opt. Lett.37, 503–505 (2012). ADS Google Scholar
Penetrante, B. M., Wood, W. M., Siders, C. W., Bardsley, J. N. & Downer, M. C. Ionization-induced frequency shifts in intense femtosecond laser pulses. J. Opt. Soc. Am. B9, 2032–2040 (1992). ADS Google Scholar