Extreme-ultraviolet frequency combs for precision metrology and attosecond science (original) (raw)

References

  1. Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).
    ADS Google Scholar
  2. Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).
    Google Scholar
  3. Reichert, J., Holzwarth, R., Udem, T. H. & Hänsch, T. W. Measuring the frequency of light with mode-locked lasers. Opt. Commun. 172, 59–68 (1999).
    ADS Google Scholar
  4. Telle, H. R. et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).
    ADS Google Scholar
  5. Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740–743 (2000).
    ADS Google Scholar
  6. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).
    ADS Google Scholar
  7. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).
    ADS Google Scholar
  8. Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free–free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979).
    ADS Google Scholar
  9. Macklin, J. J., Kmetec, J. D. & Gordon, C. L. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993).
    ADS Google Scholar
  10. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).
    ADS Google Scholar
  11. Lewenstein, M. et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).
    ADS Google Scholar
  12. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).
    ADS Google Scholar
  13. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).
    ADS Google Scholar
  14. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).
    ADS Google Scholar
  15. Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).
    ADS Google Scholar
  16. Uiberacker, M. et al. Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007).
    ADS Google Scholar
  17. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).
    ADS Google Scholar
  18. Schell, F. et al. Molecular orbital imprint in laser-driven electron recollision. Sci. Adv. 4, eaap8148 (2018).
    ADS Google Scholar
  19. Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).
    ADS Google Scholar
  20. Locher, R. et al. Energy-dependent photoemission delays from noble metal surfaces by attosecond interferometry. Optica 2, 405–410 (2015).
    ADS Google Scholar
  21. Chen, C. et al. Distinguishing attosecond electron–electron scattering and screening in transition metals. Proc. Natl Acad. Sci. USA 114, E5300–E5307 (2017).
    Google Scholar
  22. Ambrosio, M. J. & Thumm, U. Electronic structure effects in spatiotemporally resolved photoemission interferograms of copper surfaces. Phys. Rev. A 96, 051403 (2017).
    ADS Google Scholar
  23. Tao, Z. et al. Direct time-domain observation of attosecond final-state lifetimes in photoemission from solids. Science 353, 62–67 (2016).
    MathSciNet MATH ADS Google Scholar
  24. Stockman, M. I., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nat. Photon. 1, 539–544 (2007).
    ADS Google Scholar
  25. Förg, B. et al. Attosecond nanoscale near-field sampling. Nat. Commun. 7, 11717 (2016).
    ADS Google Scholar
  26. Chew, S. H. et al. Time-of-flight-photoelectron emission microscopy on plasmonic structures using attosecond extreme ultraviolet pulses. Appl. Phys. Lett. 100, 051904 (2012).
    ADS Google Scholar
  27. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).
    ADS Google Scholar
  28. Ye, J. & Cundiff, S. T. Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).
  29. Riehle, F., Gill, P., Arias, F. & Robertsson, L. The CIPM list of recommended frequency standard values: guidelines and procedures. Metrologia 55, 188–200 (2018).
    ADS Google Scholar
  30. Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).
    ADS Google Scholar
  31. Marian, A., Stowe, M. C., Lawall, J. R., Felinto, D. & Ye, J. United time-frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004).
    ADS Google Scholar
  32. Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).
    ADS Google Scholar
  33. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019).
    ADS Google Scholar
  34. Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).
    ADS Google Scholar
  35. Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).
    ADS Google Scholar
  36. Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).
    ADS Google Scholar
  37. Jones, R. J. & Ye, J. Femtosecond pulse amplification by coherent addition in a passive optical cavity. Opt. Lett. 27, 1848–1850 (2002).
    ADS Google Scholar
  38. Jones, R. J. & Ye, J. High-repetition-rate coherent femtosecond pulse amplification with an external passive optical cavity. Opt. Lett. 29, 2812–2814 (2004).
    ADS Google Scholar
  39. Mills, A. K., Hammond, T. J., Lam, M. H. C. & Jones, D. J. XUV frequency combs via femtosecond enhancement cavities. J. Phys. B 45, 142001 (2012).
    ADS Google Scholar
  40. Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).
    ADS Google Scholar
  41. Ozawa, A. & Kobayashi, Y. vuv frequency-comb spectroscopy of atomic xenon. Phys. Rev. A 87, 022507 (2013).
    ADS Google Scholar
  42. Mills, A. K. et al. An XUV source using a femtosecond enhancement cavity for photoemission spectroscopy. Proc. SPIE 9512, 95121I (2015).
  43. Mills, A. K. et al. Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy. Rev. Sci. Instrum. 90, 083001 (2019).
    ADS Google Scholar
  44. Corder, C. et al. Ultrafast extreme ultraviolet photoemission without space charge. Struct. Dyn. 5, 054301 (2018).
    Google Scholar
  45. Saule, T. et al. High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate. Nat. Commun. 10, 458 (2019).
    ADS Google Scholar
  46. Siegman, A. E. Lasers (University Science Books, 1986).
  47. Thorpe, M. J., Jones, R. J., Moll, K. D., Ye, J. & Lalezari, R. Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs. Opt. Express 13, 882–888 (2005).
    ADS Google Scholar
  48. Ozawa, A. et al. High harmonic frequency combs for high resolution spectroscopy. Phys. Rev. Lett. 100, 253901 (2008).
    ADS Google Scholar
  49. Lee, J., Carlson, D. R. & Jones, R. J. Optimizing intracavity high harmonic generation for XUV fs frequency combs. Opt. Express 19, 23315–23326 (2011).
    ADS Google Scholar
  50. Hartl, I. et al. Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 × 1014 W/cm2 peak intensity at 136 MHz. Opt. Lett. 32, 2870–2872 (2007).
    ADS Google Scholar
  51. Eidam, T., Röser, F., Schmidt, O., Limpert, J. & Tünnermann, A. 57 W, 27 fs pulses from a fiber laser system using nonlinear compression. Appl. Phys. B 92, 9 (2008).
    ADS Google Scholar
  52. Porat, G. et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat. Photon. 12, 387–391 (2018).
    ADS Google Scholar
  53. Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photon. 7, 608–612 (2013).
    ADS Google Scholar
  54. Ozawa, A., Zhao, Z., Kuwata-Gonokami, M. & Kobayashi, Y. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation. Opt. Express 23, 15107–15118 (2015).
    ADS Google Scholar
  55. Carstens, H. et al. High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica 3, 366–369 (2016).
    ADS Google Scholar
  56. Carstens, H. et al. Megawatt-scale average-power ultrashort pulses in an enhancement cavity. Opt. Lett. 39, 2595–2598 (2014).
    ADS Google Scholar
  57. Carstens, H. et al. Large-mode enhancement cavities. Opt. Express 21, 11606–11617 (2013).
    ADS Google Scholar
  58. Lilienfein, N. et al. Enhancement cavities for few-cycle pulses. Opt. Lett. 42, 271–274 (2017).
    ADS Google Scholar
  59. Jones, R. J., Thomann, I. & Ye, J. Precision stabilization of femtosecond lasers to high-finesse optical cavities. Phys. Rev. A 69, 051803 (2004).
    ADS Google Scholar
  60. Schliesser, A., Gohle, C., Udem, T. & Hänsch, T. W. Complete characterization of a broadband high-finesse cavity using an optical frequency comb. Opt. Express 14, 5975–5983 (2006).
    ADS Google Scholar
  61. Pupeza, I. et al. Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry. Opt. Express 18 26184–26195 (2010).
  62. Hammond, T. J., Mills, A. K. & Jones, D. J. Simple method to determine dispersion of high-finesse optical cavities. Opt. Express 17, 8998–9005 (2009).
    ADS Google Scholar
  63. Holzberger, S. et al. Femtosecond enhancement cavities in the nonlinear regime. Phys. Rev. Lett. 115, 023902 (2015).
    ADS Google Scholar
  64. Högner, M. et al. Cavity-enhanced noncollinear high-harmonic generation. Opt. Express 27, 19675–19691 (2019).
    ADS Google Scholar
  65. Holzberger, S. et al. Enhancement cavities for zero-offset-frequency pulse trains. Opt. Lett. 40, 2165–2168 (2015).
    ADS Google Scholar
  66. Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011).
    ADS Google Scholar
  67. Hammond, T. J., Mills, A. K. & Jones, D. J. Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield. Opt. Express 19, 24871–24883 (2011).
    ADS Google Scholar
  68. Moll, K. D., Jones, R. J. & Ye, J. Nonlinear dynamics inside femtosecond enhancement cavities. Opt. Express 13, 1672–1678 (2005).
    ADS Google Scholar
  69. Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).
    ADS Google Scholar
  70. Carlson, D. R., Lee, J., Mongelli, J., Wright, E. M. & Jones, R. J. Intracavity ionization and pulse formation in femtosecond enhancement cavities. Opt. Lett. 36, 2991–2993 (2011).
    ADS Google Scholar
  71. Lilienfein, N. et al. Temporal solitons in free-space femtosecond enhancement cavities. Nat. Photon. 13, 214–218 (2019).
    ADS Google Scholar
  72. Kalashnikov, V. L., Gohle, C. & Udem, T. Maximization of the ultrashort pulse power stored in a passive resonator synchronously pumped by a femtosecond oscillator. In Advanced Solid-State Photonics, Technical Digest 652–656 (Optical Society of America, 2005); https://doi.org/10.1364/ASSP.2005.MB2
  73. Moll, K. D., Jones, R. J. & Ye, J. Output coupling methods for cavity-based high-harmonic generation. Opt. Express 14, 8189–8197 (2006).
    ADS Google Scholar
  74. Yost, D. C., Schibli, T. R. & Ye, J. Efficient output coupling of intracavity high-harmonic generation. Opt. Lett. 33, 1099–1101 (2008).
    ADS Google Scholar
  75. Högner, M., Saule, T. & Pupeza, I. Efficiency of cavity-enhanced high harmonic generation with geometric output coupling. J. Phys. B 52, 075401 (2019).
    ADS Google Scholar
  76. Pupeza, I. et al. Cavity-enhanced high-harmonic generation with spatially tailored driving fields. Phys. Rev. Lett. 112, 103902 (2014).
    ADS Google Scholar
  77. Zhang, C. et al. Noncollinear enhancement cavity for record-high out-coupling efficiency of an extreme-UV frequency comb. Phys. Rev. Lett. 125, 093902 (2020).
    ADS Google Scholar
  78. Putnam, W. P., Schimpf, D. N., Abram, G. & Kärtner, F. X. Bessel–Gauss beam enhancement cavities for high-intensity applications. Opt. Express 20, 24429–24443 (2012).
    ADS Google Scholar
  79. Pronin, O. et al. Ultrabroadband efficient intracavity XUV output coupler. Opt. Express 19, 10232–10240 (2011).
    ADS Google Scholar
  80. Pupeza, I., Fill, E. E. & Krausz, F. Low-loss VIS/IR-XUV beam splitter for high-power applications. Opt. Express 19, 12108–12118 (2011).
    ADS Google Scholar
  81. Jones, R. J. & Diels, J.-C. Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis. Phys. Rev. Lett. 86, 3288–3291 (2001).
    ADS Google Scholar
  82. Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).
    ADS Google Scholar
  83. Schibli, T. R. et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nat. Photon. 2, 355–359 (2008).
    ADS Google Scholar
  84. Li, X. et al. High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools. Rev. Sci. Instrum. 87, 093114 (2016).
    ADS Google Scholar
  85. Yost, D. C. et al. Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nat. Phys. 5, 815–820 (2009).
    Google Scholar
  86. Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).
    ADS Google Scholar
  87. Bergeson, S. D. et al. Measurement of the He ground state lamb shift via the two-photon 11S−21S transition. Phys. Rev. Lett. 80, 3475–3478 (1998).
    ADS Google Scholar
  88. Eyler, E. E. et al. Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy. Eur. Phys. J. D 48, 43–55 (2008).
    ADS Google Scholar
  89. Herrmann, M. et al. Feasibility of coherent xuv spectroscopy on the 1S−2S transition in singly ionized helium. Phys. Rev. A 79, 052505 (2009).
    ADS Google Scholar
  90. Nauta, J. et al. Towards precision measurements on highly charged ions using a high harmonic generation frequency comb. Nucl. Instrum. Methods Phys. Res. B 408, 285–288 (2017).
    ADS Google Scholar
  91. von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).
  92. Ye, J., Ma, L. S. & Hall, J. L. Molecular iodine clock. Phys. Rev. Lett. 87, 270801 (2001).
    Google Scholar
  93. von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D 74, 146 (2020).
    ADS Google Scholar
  94. Hellmann, S., Rossnagel, K., Marczynski-Bühlow, M. & Kipp, L. Vacuum space-charge effects in solid-state photoemission. Phys. Rev. B 79, 035402 (2009).
    ADS Google Scholar
  95. Buckanie, N. M. et al. Space charge effects in photoemission electron microscopy using amplified femtosecond laser pulses. J. Phys. Condens. Matter 21, 314003 (2009).
    Google Scholar
  96. Yamamoto, S. & Matsuda, I. Time-resolved photoelectron spectroscopies using synchrotron radiation: past, present, and future. J. Phys. Soc. Jpn 82, 021003 (2013).
    ADS Google Scholar
  97. Na, M. X. et al. Direct determination of mode-projected electron–phonon coupling in the time domain. Science 366, 1231–1236 (2019).
    ADS Google Scholar
  98. Iwasawa, H. et al. Rotatable high-resolution ARPES system for tunable linear-polarization geometry. J. Synchrotron Radiat. 24, 836–841 (2017).
    Google Scholar
  99. Kraus, P. M., Zürch, M., Cushing, S. K., Neumark, D. M. & Leone, S. R. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem. 2, 82–94 (2018).
  100. Schoetz, J. et al. Perspective on petahertz electronics and attosecond nanoscopy. ACS Photon. 6, 3057–3069 (2019).
    Google Scholar
  101. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).
    ADS Google Scholar
  102. Muller, H. G. Reconstruction of attosecond harmonic beating by interference of two-photon transitions. Appl. Phys. B 74, s17–s21 (2002).
    ADS Google Scholar
  103. Isinger, M. et al. Photoionization in the time and frequency domain. Science 358, 893–896 (2017).
    ADS Google Scholar
  104. Högner, M., Tosa, V. & Pupeza, I. Generation of isolated attosecond pulses with enhancement cavities—a theoretical study. New J. Phys. 19, 033040 (2017).
    ADS Google Scholar
  105. Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181–186 (2003).
    ADS Google Scholar
  106. Berengut, J. C. & Flambaum, V. V. Testing time-variation of fundamental constants using a 229Th nuclear clock. Nucl. Phys. News 20, 19–22 (2010).
    Google Scholar
  107. Cilento, F. et al. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates. Sci. Adv. 4, eaar1998 (2018).
    ADS Google Scholar
  108. Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).
    ADS Google Scholar
  109. Boschini, F. et al. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Nat. Mater. 17, 416–420 (2018).
    ADS Google Scholar
  110. Krausz, F. & Stockman, M. I. Attosecond metrology: from electron capture to future signal processing. Nat. Photon. 8, 205–213 (2014).
    ADS Google Scholar
  111. Geneaux, R., Marroux, H. J. B., Guggenmos, A., Neumark, D. M. & Leone, S. R. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Phil. Trans. R. Soc. A 377, 20170463 (2019).
    ADS Google Scholar
  112. Marangos, J. P. Development of high harmonic generation spectroscopy of organic molecules and biomolecules. J. Phys. B 49, 132001 (2016).
    ADS Google Scholar
  113. Rothhardt, J., Tadesse, G. K., Eschen, W. & Limpert, J. Table-top nanoscale coherent imaging with XUV light. J. Opt. 20, 113001 (2018).
    ADS Google Scholar
  114. Gaida, C. et al. High-power frequency comb at 2 μm wavelength emitted by a Tm-doped fiber laser system. Opt. Lett. 43, 5178–5181 (2018).
    ADS Google Scholar
  115. Scoles, G. et al. Atomic and Molecular Beam Methods Vol. I (Oxford Univ. Press, 1988).
  116. Takahashi, E. J., Nabekawa, Y. & Midorikawa, K. Low-divergence coherent soft X-ray source at 13nm by high-order harmonics. Appl. Phys. Lett. 84, 4–6 (2004).
    ADS Google Scholar
  117. Takahashi, E. J. et al. Generation of strong optical field in soft X-ray region by using high-order harmonics. IEEE J. Sel. Top. Quantum Electron. 10, 1315–1328 (2004).
    ADS Google Scholar
  118. Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).
    ADS Google Scholar
  119. Ding, C. et al. High flux coherent super-continuum soft X-ray source driven by a single-stage, 10mJ, Ti:sapphire amplifier-pumped OPA. Opt. Express 22, 6194–6202 (2014).
    ADS Google Scholar
  120. Lorek, E. et al. High-order harmonic generation using a high-repetition-rate turnkey laser. Rev. Sci. Instrum. 85, 123106 (2014).
    ADS Google Scholar
  121. Rothhardt, J. et al. High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules. Opt. Express 24, 18133–18147 (2016).
    ADS Google Scholar
  122. Klas, R. et al. Table-top milliwatt-class extreme ultraviolet high harmonic light source. Optica 3, 1167–1170 (2016).
    ADS Google Scholar
  123. Rothhardt, J. et al. 53W average power few-cycle fiber laser system generating soft X rays up to the water window. Opt. Lett. 39, 5224–5227 (2014).
    ADS Google Scholar
  124. Rothhardt, J. et al. Absorption-limited and phase-matched high harmonic generation in the tight focusing regime. New J. Phys. 16, 033022 (2014).
    ADS Google Scholar
  125. Puppin, M. et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev. Sci. Instrum. 90, 023104 (2019).
    ADS Google Scholar
  126. Hädrich, S. et al. High photon flux table-top coherent extreme-ultraviolet source. Nat. Photon. 8, 779–783 (2014).
    ADS Google Scholar
  127. Chiang, C.-T. et al. Boosting laboratory photoelectron spectroscopy by megahertz high-order harmonics. New J. Phys. 17, 013035 (2015).
    ADS Google Scholar
  128. Zhao, Z. & Kobayashi, Y. Realization of a mW-level 10.7-eV (_λ_=115.6nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz. Opt. Express 25, 13517–13526 (2017).
    ADS Google Scholar
  129. Emaury, F., Diebold, A., Saraceno, C. J. & Keller, U. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica 2, 980–984 (2015).
    ADS Google Scholar
  130. Hädrich, S. et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl. 4, e320–e320 (2015).
    Google Scholar
  131. Vernaleken, A. et al. Single-pass high-harmonic generation at 20.8MHz repetition rate. Opt. Lett. 36, 3428–3430 (2011).
    ADS Google Scholar
  132. Bernhardt, B. et al. Vacuum ultraviolet frequency combs generated by a femtosecond enhancement cavity in the visible. Opt. Lett. 37, 503–505 (2012).
    ADS Google Scholar
  133. Penetrante, B. M., Wood, W. M., Siders, C. W., Bardsley, J. N. & Downer, M. C. Ionization-induced frequency shifts in intense femtosecond laser pulses. J. Opt. Soc. Am. B 9, 2032–2040 (1992).
    ADS Google Scholar

Download references