Best practices for analysing microbiomes (original) (raw)
Meisel, J. S., Hannigan, G. D. & Tyldsley, A. S. Skin microbiome surveys are strongly influenced by experimental design. J. Invest. Dermatol.136, 947–956 (2016). CASPubMedPubMed Central Google Scholar
Falony, G. et al. Population-level analysis of gut microbiome variation. Science29, 560–564 (2016). Google Scholar
Noguera-Julian, M. et al. Gut microbiota linked to sexual preference and HIV infection. EBioMedicine.5, 135–146 (2016). PubMedPubMed Central Google Scholar
Wu, Gary, D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science334, 105–108 (2011). CASPubMedPubMed Central Google Scholar
Forslund, K. et al. Disentangling the effects of type 2 diabetes and metformin on the human gut microbiota. Nature528, 262–266 (2015). This study is an excellent example of how study design and metadata collection can influence experimental results. CASPubMedPubMed Central Google Scholar
Jackson, M. A. et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut65, 749–756 (2016). PubMed Google Scholar
Halfvarson, J. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol.2, 17004 (2017). CASPubMedPubMed Central Google Scholar
Kelly, B. J. et al. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics31, 2461–2468 (2015). CASPubMedPubMed Central Google Scholar
Debelius, J., Song, S. J., Vazquez-Baeza, Y., Xu, Z. Z., Gonzalez, A. & Knight, R. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol.17, 217 (2016). PubMedPubMed Central Google Scholar
La Rosa, P. S. et al. Hypothesis testing and power calculations for taxonomic-based human microbiome data. PLoS ONE.7, e52078 (2012). PubMedPubMed Central Google Scholar
Knights, D., Costello, E. K. & Knight, R. Supervised classification of human microbiota. FEMS Microbiol. Rev.35, 343–359 (2011). CASPubMed Google Scholar
Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA108, 4554–4561 (2011). CASPubMed Google Scholar
Fierer, N., Hamady, M., Lauber, C. L. & Knight, R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc. Natl Acad. Sci. USA105, 17994–17999 (2008). CASPubMedPubMed Central Google Scholar
Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science326, 1694–1697 (2009). CASPubMedPubMed Central Google Scholar
The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature486, 207–214 (2012). This study was the first large-scale effort to characterize the healthy human microbiota and commonly used reference database. PubMed Central Google Scholar
Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol.62, 142–160 (2007). CASPubMed Google Scholar
Kostic, A. D., Howitt, M. R. & Garrett, W. S. Exploring host-microbiota interactions in animal models and humans. Genes Dev.27, 701–718 (2013). CASPubMedPubMed Central Google Scholar
Ridaura, V. K. et al. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science341, 6150 (2013). Google Scholar
Reber, S. O. et al. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium Vaccae promotes stress resilience in mice. Proc. Natl Acad. Sci. USA113, E3130–E3139 (2016). CASPubMedPubMed Central Google Scholar
Friswell, M. K. et al. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS ONE.5, e8584 (2010). PubMedPubMed Central Google Scholar
Snijders, A. M. et al. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nat. Microbiol.2, 16221 (2016). CASPubMed Google Scholar
Stagaman, K., Burns, A. R., Guillemin, K. & Bohannan, B. J. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish. ISME J.11, 1630–1639 (2017). CASPubMedPubMed Central Google Scholar
Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol.35, 1077–1086 (2017). CASPubMedPubMed Central Google Scholar
Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol.35, 1069–1076 (2017). CASPubMed Google Scholar
Salter, S. J. et al. Reagent and laboratory contamination can. critically impact sequence-based microbiome analyses. BMC Biol.12, 87 (2014). PubMedPubMed Central Google Scholar
Amir, A. et al. Correcting for microbial blooms in fecal samples during room-temperature shipping. mSystems2, e00199–00116 (2017). CASPubMedPubMed Central Google Scholar
Fouhy, F. et al. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS ONE.10, e0119355 (2015). PubMedPubMed Central Google Scholar
Song, S. J. et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems1, e00021–00016 (2016). PubMedPubMed Central Google Scholar
Jumpstart Consortium Human Microbiome Project Data Generation Working Group. Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS ONE.7, e39315 (2012). PubMed Central Google Scholar
Chase, J. et al. Geography and location are the primary drivers of office microbiome composition. mSystems1, e00022–00016 (2016). PubMedPubMed Central Google Scholar
Walker, A. W. et al. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome3, 26 (2015). PubMedPubMed Central Google Scholar
Bonnet, R., Suau, A., Doré, J., Gibson, G. R. & Collins, M. D. Differences in rDNA libraries of faecal bacteria derived from 10- and 25-cycle PCRs. Int. J. Syst. Evol. Microbiol.52, 757–763 (2002). CASPubMed Google Scholar
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol.12, 87 (2014). PubMedPubMed Central Google Scholar
Walters, W. A. et al. PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics27, 1159–1161 (2011). CASPubMedPubMed Central Google Scholar
Zaneveld, J. R., Lozupone, C., Gordon, J. I. & Knight, R. Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives. Nucleic Acids Res.38, 3869–3879 (2010). CASPubMedPubMed Central Google Scholar
Okuda, S., Tsuchiya, Y., Kiriyama, C., Itoh, M. & Morisaki, H. Virtual metagenome reconstruction from 16S rRNA gene sequences. Nat. Commun.3, 1203 (2012). PubMed Google Scholar
Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol.31, 814–821 (2013). CASPubMedPubMed Central Google Scholar
Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics31, 2882–2884 (2015). PubMedPubMed Central Google Scholar
Jun, S. R., Robeson, M. S., Hauser, L. J., Schadt, C. W. & Gorin, A. A. PanFP: pangenome-based functional profiles for microbial communities. BMC Res. Notes8, 479 (2015). PubMedPubMed Central Google Scholar
Scholz, M. et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat. Methods.13, 435–438 (2016). CASPubMed Google Scholar
Mukherjee, S. et al. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat. Biotechnol.35, 676–683 (2016). Google Scholar
Abubucker, Sahar et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol.8, e1002358 (2012). CASPubMedPubMed Central Google Scholar
Quince, C., Walker, A. W. & Simpson, J. T. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol.35, 833–844 (2017). This is a comprehensive review on using shotgun metagenomics. CASPubMed Google Scholar
Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol.2, 16242 (2016). PubMed Google Scholar
Emerson, J. B. et al. Schrödinger’s microbes: tools for distinguishing the living from the dead in microbial ecosystems. Microbiome5, 86 (2017). PubMedPubMed Central Google Scholar
Giannoukos, G. et al. Efficient and robust RNA-Seq process for cultured bacteria and complex community transcriptomes. Genome Biol.13, 3 (2012). Google Scholar
Wang, Y., Hayatsu, M. & Fujii, T. Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ.27, 111–121 (2012). CASPubMedPubMed Central Google Scholar
Tveit, A. T., Urich, T. & Svenning, M. M. Metatranscriptomic analysis of arctic peat soil microbiota. Appl. Environ. Microbiol.80, 5761–5772 (2014). CASPubMedPubMed Central Google Scholar
Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA111, E2329–E2338 (2014). CASPubMedPubMed Central Google Scholar
Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell152, 39–50 (2013). CASPubMedPubMed Central Google Scholar
Bashiardes, S., Zilberman-Schapira, G. & Elinav, E. Use of metatranscriptomics in microbiome research. Bioinform. Biol. Insights.10, 19–25 (2016). CASPubMedPubMed Central Google Scholar
Soergel, D. A. W., Dey, N., Knight, R. & Brenner, S. E. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J.6, 1440–1444 (2012). CASPubMedPubMed Central Google Scholar
Thompson, L. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature551, 457–453 (2017). This study develops and implements standardized protocols and new analytical methods that enabled a massive comparison of over 100 studies to characterize the microbial diversity on Earth. CASPubMedPubMed Central Google Scholar
Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour.11, 759–769 (2011). CASPubMed Google Scholar
Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol.12, 118–123 (2010). CASPubMed Google Scholar
Reeder, J. & Knight, R. The ‘rare biosphere’: a reality check. Nat. Methods.6, 636–637 (2009). CASPubMed Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods.7, 335–336 (2010). This is a widely used software package for microbiome analysis. CASPubMedPubMed Central Google Scholar
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol.75, 7537–7541 (2009).This is a widely used software package for microbiome analysis. CASPubMedPubMed Central Google Scholar
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J.11, 2639–2643 (2017). PubMedPubMed Central Google Scholar
Eren, A. M. et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol.4, 1111–1119 (2013). PubMed Central Google Scholar
Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems.2, e00191–e00116 (2017). PubMedPubMed Central Google Scholar
Callahan, B. J. et al. DADA2: high resolution sample inference from Illumina amplicon data. Nat. Methods.13, 581–583 (2016). CASPubMedPubMed Central Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol.73, 5261–5267 (2007). CASPubMedPubMed Central Google Scholar
McDonald, D. et al. An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J.6, 610–618 (2012). CASPubMed Google Scholar
Kuczynski, J. et al. Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat. Methods.7, 813–819 (2010). CASPubMedPubMed Central Google Scholar
Olm, M. R. et al. The source and evolutionary history of a microbial contaminant identified through soil metagenomic analysis. MBio.8, e01969–16 (2017). CASPubMedPubMed Central Google Scholar
Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol.15, R46 (2014). PubMedPubMed Central Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods.4, 357–359 (2012). Google Scholar
Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res.26, 1721–1729 (2016). CASPubMedPubMed Central Google Scholar
McIntyre, A. B. R. et al. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol.18, 182 (2017). PubMedPubMed Central Google Scholar
Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods.12, 902–903 (2015). CASPubMed Google Scholar
Nguyen, N., Mirarab, S., Liu, B., Pop, M. & Warnow, T. TIPP: taxonomic identification and phylogenetic profiling. Bioinformatics30, 3548–3555 (2014). CASPubMedPubMed Central Google Scholar
Huson, D. H. et al. MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol12, e1004957 (2016). PubMedPubMed Central Google Scholar
O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res.44, D733–D745 (2016). PubMed Google Scholar
Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res.44, D279–D285 (2016). CASPubMed Google Scholar
Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics31, 926–932 (2015). CASPubMed Google Scholar
Markowitz, V. M. et al. IMG: The integrated microbial genomes database and comparative analysis system. Nucleic Acids Res.40, D115–D122 (2012). CASPubMed Google Scholar
Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res.44, 1–6 (2016). Google Scholar
Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J.9, 1–10 (2014). Google Scholar
Prestat, E. et al. FOAM (Functional Ontology Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus. Nucleic Acids Res.42, e145 (2014). PubMedPubMed Central Google Scholar
Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science348, 6237 (2015). Google Scholar
Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotechnol.33, 1103–1108 (2015). CASPubMed Google Scholar
Qin, J. et al. A human gut microbial gene catalog established by metagenomic sequencing. Nature464, 59–65 (2010). This study is the first large-scale effort to catalogue microbial genomes in the human gut using shotgun metagenomic sequencing. CASPubMedPubMed Central Google Scholar
Medema, M. H. et al. AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res.39, W339–W346 (2011). CASPubMedPubMed Central Google Scholar
Howe, A. C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Natl Acad. Sci. USA111, 4904–4909 (2014). CASPubMedPubMed Central Google Scholar
Ye, Y. & Tang, H. Utilizing de Bruijn graph of metagenome assembly for metatranscriptome analysis. Bioinformatics32, 1001–1008 (2016). CASPubMed Google Scholar
Narayanasamy, S. et al. IMP: a pipeline for reproducible reference-independent integrated metagenomic and metatranscriptomic analyses. Genome Biol.17, 260 (2016). PubMedPubMed Central Google Scholar
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol.1, 16048 (2016). CASPubMed Google Scholar
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol.19, 455–477 (2012). CASPubMedPubMed Central Google Scholar
Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics31, 1674–1676 (2014). Google Scholar
Vollmers, J., Wiegand, S. & Kaster, A. K. Comparing and evaluating metagenome assembly tools from a microbiologist’s perspective - not only size matters! PLoS ONE12, e0169662 (2017). PubMedPubMed Central Google Scholar
Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics32, 605–607 (2015). PubMed Google Scholar
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods.11, 1144–1146 (2014). CASPubMed Google Scholar
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res.25, 1043–1055 (2015). CASPubMedPubMed Central Google Scholar
Laczny, C. C. et al. VizBin - an application for reference-independent visualization and human-augmented binning of metagenomic data. Microbiome3, 1 (2015). PubMedPubMed Central Google Scholar
Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ3, e1319 (2015). PubMedPubMed Central Google Scholar
White Iii, R. A. et al. ATLAS (Automatic Tool for Local Assembly Structures) -a comprehensive infrastructure for assembly, annotation, and genomic binning of metagenomic and metatranscriptomic data. PeerJhttps://doi.org/10.7287/peerj.preprints.2843v1 (2017). Article Google Scholar
Treangen, T. J. et al. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol.14, R2 (2013). PubMedPubMed Central Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26, 139–140 (2010). CASPubMed Google Scholar
Sczyrba, A. et al. Critical assessment of metagenome interpretation–a benchmark of computational metagenomics software. Nat. Methods14, 1063–1071 (2017). CASPubMedPubMed Central Google Scholar
Barwell, L. J., Isaac, N. J. B. & Kunin, W. E. Measuring ß-diversity with species abundance data. J. Anim. Ecol.84, 1112–1122 (2015). PubMedPubMed Central Google Scholar
Hamady, M., Lozupone, C. & Knight, R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J.4, 17–27 (2010). This study underscores the power of incorporating phylogenetic information when comparing microbial communities. CASPubMed Google Scholar
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg Sci.14, 927–930 (2003). Google Scholar
Anderson, M. J. & Walsh, D. C. I. What null hypothesis are you testing? PERMANOVA, ANOSIM and the Mantel test in the face of heterogeneous dispersions. Ecol. Monogr.83, 557–574 (2013). Google Scholar
Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome5, 27 (2017). PubMedPubMed Central Google Scholar
McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol.10, e1003531 (2014). PubMedPubMed Central Google Scholar
Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience2, 16 (2013). PubMedPubMed Central Google Scholar
Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Series B. Stat. Methodol.44, 139–177 (1987). Google Scholar
Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis.26, 27663 (2015). PubMed Google Scholar
Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J.10, 1–13 (2016). CAS Google Scholar
Lovell, D., Pawlowsky-Glahn, V., Egozcue, J. J., Marguerat, S. & Bähler, J. Proportionality: a valid alternative to correlation for relative data. PLoS Comput. Biol.11, e1004075 (2015). PubMedPubMed Central Google Scholar
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol.8, e1002687 (2012). CASPubMedPubMed Central Google Scholar
Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol.11, e1004226 (2015). PubMedPubMed Central Google Scholar
Schwager, E., Mallick, H., Ventz, S. & Huttenhower, C. A. Bayesian method for detecting pairwise associations in compositional data. PLoS Comput. Biol.13, e1005852 (2017). PubMedPubMed Central Google Scholar
Washburne, A. D. et al. Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets. PeerJ5, e2969 (2017). PubMedPubMed Central Google Scholar
Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. A phylogenetic transform enhances analysis of compositional microbiota data. eLife6, e21887 (2017). PubMedPubMed Central Google Scholar
Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature551, 507–511 (2017). CASPubMed Google Scholar
Kleyer, H., Tecon, R. & Or, D. Resolving species level changes in a representative soil bacterial community using microfluidic quantitative. Front. Microbiol.8, 2017 (2017). PubMedPubMed Central Google Scholar
Knights, D., Parfrey, L. W., Zaneveld, J., Lozupone, C. & Knight, R. Human-associated microbial signatures: examining their predictive value. Cell Host Microbe.10, 292–296 (2011). CASPubMed Google Scholar
Huang, S. et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J.8, 1768–1780 (2014). PubMedPubMed Central Google Scholar
Teng, F. et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe.18, 296–306 (2015). CASPubMed Google Scholar
Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science351, 158–162 (2016). CASPubMed Google Scholar
Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature510, 417–421 (2014). This study demonstrates the power of machine learning with microbiome data by developing a microbiota maturity index. CASPubMedPubMed Central Google Scholar
Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods.8, 761–763 (2011). CASPubMedPubMed Central Google Scholar
Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science345, 1048–1052 (2014). CASPubMedPubMed Central Google Scholar
Roume, H. et al. A biomolecular isolation framework for eco-systems biology. ISME J.7, 110–121 (2013). CASPubMed Google Scholar
Nicholson, J. K. & Lindon, J. C. Systems biology: metabonomics. Nature455, 1054–1056 (2008). CASPubMed Google Scholar
Wang, R. & Seyedsayamdost, M. R. Hijacking exogenous signals to generate new secondary metabolites during symbiotic interactions. Nat. Rev. Chem.1, 21 (2017). Google Scholar
Huan, T. et al. Systems biology guided by XCMS online metabolomics addressing reproducibility in single- laboratory phenotyping experiments. Nat. Methods14, 461–462 (2017). CASPubMedPubMed Central Google Scholar
Hurley, J. R. & Cattell, R. B. The procrustes program: producing direct rotation to test a hypothesized factor structure. Behav. Sci.7, 258–262 (1962). Google Scholar
Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res.27, 209–220 (1967). CASPubMed Google Scholar
Doledec, S. & Chessel, D. Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biol.31, 277–294 (1994). Google Scholar
Boulesteix, A. & Strimmer, K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Brief. Bioinform.8, 32–44 (2007). CASPubMed Google Scholar
Witten, D. M. & Tibshirani, R. J. Extensions of sparse canonical correlation analysis with applications to genomic data. Stat. Appl. Genet. Mol. Biol.8, 1–27 (2009). Google Scholar
Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol.34, 828–837 (2016). CASPubMedPubMed Central Google Scholar
Dhanasekaran, A. R., Pearson, J. L., Ganesan, B. & Weimer, B. C. Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction. BMC Bioinformatics.16, 62 (2015). PubMedPubMed Central Google Scholar
Protsyuk, Ivan. et al. 3D molecular cartography using LC-MS combined with optimus and ‘ili software. Nat. Protoc.13, 134–154 (2018). CASPubMed Google Scholar
McHardy, I. H. et al. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome1, 17 (2013). PubMedPubMed Central Google Scholar
Whiteson, K. L. et al. Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation. ISME J.8, 1247–1258 (2014). CASPubMedPubMed Central Google Scholar
Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun.5, 3114 (2014). A great example of omics data integration (microbiome and metabolome data). PubMed Google Scholar
Erickson, A. R. et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS ONE.7, e49138 (2012). CASPubMedPubMed Central Google Scholar
Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature521, 208–212 (2015). CASPubMed Google Scholar
Jagtap, P. D. et al. Metaproteomic analysis using the galaxy framework. Proteomics15, 3553–3565 (2015). CASPubMed Google Scholar
Cheng, K. et al. MetaLab: an automated pipeline for metaproteomic data analysis. Microbiome5, 157 (2017). PubMedPubMed Central Google Scholar
Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specificaitons. Nat. Biotechnol.29, 415–420 (2011). CASPubMedPubMed Central Google Scholar
Ríos-Covián, D. et al. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol.7, 185 (2016). PubMedPubMed Central Google Scholar
Balskus, E. P. Colibactin: understanding an elusive gut bacterial genotoxin. Nat. Prod. Rep.32, 1534–1540 (2015). CASPubMed Google Scholar
Quinn, R. A. et al. Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome. ISME J.95384, 1–16 (2015). Google Scholar
Fang, H., Huang, C., Zhao, H. & Deng, M. CCLasso: correlation inference for compositional data through lasso. Bioinformatics31, 3172–3180 (2015). CASPubMedPubMed Central Google Scholar
Lê Cao, K. A., González, I. & Déjean, S. IntegrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics25, 2855–2856 (2009). PubMedPubMed Central Google Scholar
Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA106, 3698–3703 (2009). CASPubMedPubMed Central Google Scholar
Liu, Z., Lozupone, C., Hamady, M., Bushman, F. D. & Knight, R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res.35, e120 (2007). PubMedPubMed Central Google Scholar
The Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe16, 276–289 (2014). Google Scholar
Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science349, 1101–1106 (2015). CASPubMedPubMed Central Google Scholar
Sangwan, N., Xia, F. & Gilbert, J. A. Recovering complete and draft population genomes from metagenome datasets. Microbiome4, 8 (2016). PubMedPubMed Central Google Scholar
Bikel, S. et al. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput. Struct. Biotechnol. J.13, 390–401 (2015). CASPubMedPubMed Central Google Scholar
Sultan, M. et al. Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics.15, 675 (2014). PubMedPubMed Central Google Scholar
Peano, C. et al. An efficient rRNA removal method for RNA sequencing in GC-rich bacteria. Microb. Inform. Exp.3, 1 (2013). CASPubMedPubMed Central Google Scholar