Early fungi from the Proterozoic era in Arctic Canada (original) (raw)
References
Kenrick, P. & Crane, P. R. The origin and early evolution of plants on land. Nature389, 33–39 (1997). ArticleCASADS Google Scholar
Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K. & Barea, J. M. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils37, 1–16 (2003). Google Scholar
Berbee, M. L., James, T. Y. & Strullu-Derrien, C. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu. Rev. Microbiol. 71, 41–60 (2017). ArticleCAS Google Scholar
Taylor, T. N., Krings, M. & Taylor, E. L. Fossil Fungi (Academic, Amsterdam, 2014). Google Scholar
Redecker, D., Kodner, R. & Graham, L. E. Glomalean fungi from the Ordovician. Science289, 1920–1921 (2000). ArticleCASADS Google Scholar
Berbee, M. L. & Taylor, J. W. Dating the molecular clock in fungi–how close are we? Fungal Biol. Rev. 24, 1–16 (2010). Article Google Scholar
Watkinson, S. C., Boddy, L. & Money, N. The Fungi (Academic, London, 2015). Google Scholar
Parfrey, L. W., Lahr, D. J., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA108, 13624–13629 (2011). ArticleCASADS Google Scholar
Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014). Article Google Scholar
Butterfield, N. J. Probable proterozoic fungi. Paleobiology31, 165–182 (2005). Article Google Scholar
Graham, L. E., Trest, M. T. & Cook, M. E. Acetolysis resistance of modern fungi: testing attributions of enigmatic Proterozoic and Early Paleozoic fossils. Int. J. Plant Sci. 178, 330–339 (2017). Article Google Scholar
Marshall, C. P., Javaux, E. J., Knoll, A. H. & Walter, M. R. Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology. Precambr. Res. 138, 208–224 (2005). ArticleCASADS Google Scholar
Loron, C. C., Rainbird, R. H., Turner, E. C., Greenman, J. W. & Javaux, E. J. Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): diversity and biostratigraphic significance. Precambr. Res. 321, 349–374 (2019). ArticleCASADS Google Scholar
Rainbird, R. H., Jefferson, C. W. & Young, G. M. The early Neoproterozoic sedimentary succession B of northwestern Laurentia: correlations and paleogeographic significance. Geol. Soc. Am. Bull. 108, 454–470 (1996). ArticleADS Google Scholar
Greenman, J. W. & Rainbird, R. H. Stratigraphy of the Upper Nelson Head, Aok, Grassy Bay, and Boot Inlet Formations in the Brock Inlier, Northwest Territories (NTS 97-A, D). Geological Survey of Canada Open File 8394 (Canada Geological Survey, Natural Resources Canada, 2018). Book Google Scholar
van Acken, D., Thomson, D., Rainbird, R. H. & Creaser, R. A. Constraining the depositional history of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW Canada: rhenium–osmium dating of black shales from the Wynniatt and Boot Inlet Formations. Precambr. Res. 236, 124–131 (2013). ArticleADS Google Scholar
Rainbird, R. H. et al. Zircon provenance data record the lateral extent of pancontinental, early Neoproterozoic rivers and erosional unroofing history of the Grenville orogen. Geol. Soc. Am. Bull. 129, 1408–1423 (2017). Google Scholar
Javaux, E. J., Knoll, A. H. & Walter, M. Recognizing and interpreting the fossils of early eukaryotes. Orig. Life Evol. Biosph. 33, 75–94 (2003). ArticleCASADS Google Scholar
Baludikay, B. K. et al. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia). Int. J. Coal Geol. 191, 80–94 (2018). ArticleCAS Google Scholar
Mohaček-Grošev, V., Božac, R. & Puppels, G. J. Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochim. Acta A57, 2815–2829 (2001). ArticleADS Google Scholar
Kačuráková, M., Capek, P., Sasinková, V., Wellner, N. & Ebringerová, A. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 43, 195–203 (2000). Article Google Scholar
Riquelme, M. & Sánchez-León, E. The Spitzenkörper: a choreographer of fungal growth and morphogenesis. Curr. Opin. Microbiol. 20, 27–33 (2014). ArticleCAS Google Scholar
Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia108, 1028–1046 (2016). ArticleCAS Google Scholar
Webster, J. & Weber, R. Introduction to Fungi (Cambridge Univ. Press, Cambridge, 2007). Book Google Scholar
Mélida, H., Sandoval-Sierra, J. V., Diéguez-Uribeondo, J. & Bulone, V. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. Eukaryot. Cell12, 194–203 (2013). Article Google Scholar
Richards, T. A., Leonard, G. & Wideman, J. G. What defines the “kingdom” fungi? Microbiol. Spectr. 5, FUNK-0044-2017 (2017). Article Google Scholar
Wanjun, T., Cunxin, W. & Donghua, C. Kinetic studies on the pyrolysis of chitin and chitosan. Polym. Degrad. Stabil. 87, 389–394 (2005). Article Google Scholar
Muzzarelli, R. A. A. in Chitin: Formation and Diagenesis (Topics in Geobiology Vol. 34) (ed. Gupta, N. S.) 1–34 (Springer Science and Business Media, New York, 2010).
Taylor, J. W. & Berbee, M. L. Dating divergences in the fungal tree of life: review and new analyses. Mycologia98, 838–849 (2006). Article Google Scholar
Javaux, E. J. & Knoll, A. H. Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Paleontol. 91, 199–229 (2017). Article Google Scholar
Grey, K. A Modified Palynological Preparation Technique for the Extraction of Large Neoproterozoic Acanthomorph Acritarchs and Other Acid-Soluble Microfossils. (Geological Survey of Western Australian, Department of Minerals and Energy, Perth, 1999).
Sforna, M. C., Van Zuilen, M. A. & Philippot, P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochim. Cosmochim. Acta124, 18–33 (2014). ArticleCASADS Google Scholar
Liu, D. H. et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications. Chin. Sci. Bull. 58, 1285–1298 (2013). ArticleCAS Google Scholar
Sauerer, B., Craddock, P. R., AlJohani, M. D., Alsamadony, K. L. & Abdallah, W. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation. Int. J. Coal Geol. 173, 150–157 (2017). ArticleCAS Google Scholar
Paulino, A. T., Simionato, J. I., Garcia, J. C. & Nozaki, J. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr. Polym. 64, 98–103 (2006). ArticleCAS Google Scholar
Movasaghi, Z., Rehman, S. & Rehman, D. I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43, 134–179 (2008). ArticleCASADS Google Scholar
Michell, A. J. & Scurfield, G. Composition of extracted fungal cell walls as indicated by infrared spectroscopy. Arch. Biochem. Biophys. 120, 628–637 (1967). ArticleCAS Google Scholar
Bahmed, K., Quilès, F., Bonaly, R. & Coulon, J. Fluorescence and infrared spectrometric study of cell walls from Candida, Kluyveromyces, Rhodotorula and Schizosaccharomyces yeasts in relation with their chemical composition. Biomacromolecules4, 1763–1772 (2003). ArticleCAS Google Scholar