Early fungi from the Proterozoic era in Arctic Canada (original) (raw)

References

  1. Kenrick, P. & Crane, P. R. The origin and early evolution of plants on land. Nature 389, 33–39 (1997).
    Article CAS ADS Google Scholar
  2. Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K. & Barea, J. M. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 37, 1–16 (2003).
    Google Scholar
  3. Berbee, M. L., James, T. Y. & Strullu-Derrien, C. Early diverging fungi: diversity and impact at the dawn of terrestrial life. Annu. Rev. Microbiol. 71, 41–60 (2017).
    Article CAS Google Scholar
  4. Taylor, T. N., Krings, M. & Taylor, E. L. Fossil Fungi (Academic, Amsterdam, 2014).
    Google Scholar
  5. Redecker, D., Kodner, R. & Graham, L. E. Glomalean fungi from the Ordovician. Science 289, 1920–1921 (2000).
    Article CAS ADS Google Scholar
  6. Berbee, M. L. & Taylor, J. W. Dating the molecular clock in fungi–how close are we? Fungal Biol. Rev. 24, 1–16 (2010).
    Article Google Scholar
  7. Watkinson, S. C., Boddy, L. & Money, N. The Fungi (Academic, London, 2015).
    Google Scholar
  8. Parfrey, L. W., Lahr, D. J., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).
    Article CAS ADS Google Scholar
  9. Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014).
    Article Google Scholar
  10. Butterfield, N. J. Probable proterozoic fungi. Paleobiology 31, 165–182 (2005).
    Article Google Scholar
  11. Retallack, G. J. Ediacaran life on land. Nature 493, 89–92 (2013).
    Article ADS Google Scholar
  12. Graham, L. E., Trest, M. T. & Cook, M. E. Acetolysis resistance of modern fungi: testing attributions of enigmatic Proterozoic and Early Paleozoic fossils. Int. J. Plant Sci. 178, 330–339 (2017).
    Article Google Scholar
  13. Marshall, C. P., Javaux, E. J., Knoll, A. H. & Walter, M. R. Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology. Precambr. Res. 138, 208–224 (2005).
    Article CAS ADS Google Scholar
  14. Loron, C. C., Rainbird, R. H., Turner, E. C., Greenman, J. W. & Javaux, E. J. Organic-walled microfossils from the late Mesoproterozoic to early Neoproterozoic lower Shaler Supergroup (Arctic Canada): diversity and biostratigraphic significance. Precambr. Res. 321, 349–374 (2019).
    Article CAS ADS Google Scholar
  15. Rainbird, R. H., Jefferson, C. W. & Young, G. M. The early Neoproterozoic sedimentary succession B of northwestern Laurentia: correlations and paleogeographic significance. Geol. Soc. Am. Bull. 108, 454–470 (1996).
    Article ADS Google Scholar
  16. Greenman, J. W. & Rainbird, R. H. Stratigraphy of the Upper Nelson Head, Aok, Grassy Bay, and Boot Inlet Formations in the Brock Inlier, Northwest Territories (NTS 97-A, D). Geological Survey of Canada Open File 8394 (Canada Geological Survey, Natural Resources Canada, 2018).
    Book Google Scholar
  17. van Acken, D., Thomson, D., Rainbird, R. H. & Creaser, R. A. Constraining the depositional history of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW Canada: rhenium–osmium dating of black shales from the Wynniatt and Boot Inlet Formations. Precambr. Res. 236, 124–131 (2013).
    Article ADS Google Scholar
  18. Rainbird, R. H. et al. Zircon provenance data record the lateral extent of pancontinental, early Neoproterozoic rivers and erosional unroofing history of the Grenville orogen. Geol. Soc. Am. Bull. 129, 1408–1423 (2017).
    Google Scholar
  19. Javaux, E. J., Knoll, A. H. & Walter, M. Recognizing and interpreting the fossils of early eukaryotes. Orig. Life Evol. Biosph. 33, 75–94 (2003).
    Article CAS ADS Google Scholar
  20. Baludikay, B. K. et al. Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia). Int. J. Coal Geol. 191, 80–94 (2018).
    Article CAS Google Scholar
  21. Mohaček-Grošev, V., Božac, R. & Puppels, G. J. Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochim. Acta A 57, 2815–2829 (2001).
    Article ADS Google Scholar
  22. Kačuráková, M., Capek, P., Sasinková, V., Wellner, N. & Ebringerová, A. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 43, 195–203 (2000).
    Article Google Scholar
  23. Riquelme, M. & Sánchez-León, E. The Spitzenkörper: a choreographer of fungal growth and morphogenesis. Curr. Opin. Microbiol. 20, 27–33 (2014).
    Article CAS Google Scholar
  24. Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046 (2016).
    Article CAS Google Scholar
  25. Webster, J. & Weber, R. Introduction to Fungi (Cambridge Univ. Press, Cambridge, 2007).
    Book Google Scholar
  26. Mélida, H., Sandoval-Sierra, J. V., Diéguez-Uribeondo, J. & Bulone, V. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. Eukaryot. Cell 12, 194–203 (2013).
    Article Google Scholar
  27. Richards, T. A., Leonard, G. & Wideman, J. G. What defines the “kingdom” fungi? Microbiol. Spectr. 5, FUNK-0044-2017 (2017).
    Article Google Scholar
  28. Wanjun, T., Cunxin, W. & Donghua, C. Kinetic studies on the pyrolysis of chitin and chitosan. Polym. Degrad. Stabil. 87, 389–394 (2005).
    Article Google Scholar
  29. Muzzarelli, R. A. A. in Chitin: Formation and Diagenesis (Topics in Geobiology Vol. 34) (ed. Gupta, N. S.) 1–34 (Springer Science and Business Media, New York, 2010).
  30. Taylor, J. W. & Berbee, M. L. Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98, 838–849 (2006).
    Article Google Scholar
  31. Javaux, E. J. & Knoll, A. H. Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Paleontol. 91, 199–229 (2017).
    Article Google Scholar
  32. Grey, K. A Modified Palynological Preparation Technique for the Extraction of Large Neoproterozoic Acanthomorph Acritarchs and Other Acid-Soluble Microfossils. (Geological Survey of Western Australian, Department of Minerals and Energy, Perth, 1999).
  33. Sforna, M. C., Van Zuilen, M. A. & Philippot, P. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochim. Cosmochim. Acta 124, 18–33 (2014).
    Article CAS ADS Google Scholar
  34. Liu, D. H. et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications. Chin. Sci. Bull. 58, 1285–1298 (2013).
    Article CAS Google Scholar
  35. Sauerer, B., Craddock, P. R., AlJohani, M. D., Alsamadony, K. L. & Abdallah, W. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation. Int. J. Coal Geol. 173, 150–157 (2017).
    Article CAS Google Scholar
  36. Paulino, A. T., Simionato, J. I., Garcia, J. C. & Nozaki, J. Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr. Polym. 64, 98–103 (2006).
    Article CAS Google Scholar
  37. Movasaghi, Z., Rehman, S. & Rehman, D. I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43, 134–179 (2008).
    Article CAS ADS Google Scholar
  38. Michell, A. J. & Scurfield, G. Composition of extracted fungal cell walls as indicated by infrared spectroscopy. Arch. Biochem. Biophys. 120, 628–637 (1967).
    Article CAS Google Scholar
  39. Bahmed, K., Quilès, F., Bonaly, R. & Coulon, J. Fluorescence and infrared spectrometric study of cell walls from Candida, Kluyveromyces, Rhodotorula and Schizosaccharomyces yeasts in relation with their chemical composition. Biomacromolecules 4, 1763–1772 (2003).
    Article CAS Google Scholar

Download references