Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle (original) (raw)

References

  1. McPhaden, M. J. Genesis and evolution of the 1997–98 El Niño. Science 283, 950–954 (1999).
    CAS PubMed Google Scholar
  2. Maloney, E. D. & Hartmann, D. L. Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Clim. 13, 1451–1460 (2000).
    ADS Google Scholar
  3. Klotzbach, P. J. & Oliver, E. C. Modulation of Atlantic basin tropical cyclone activity by the Madden–Julian oscillation (MJO) from 1905 to 2011. J. Clim. 28, 204–217 (2015).
    ADS Google Scholar
  4. Joseph, S., Sahai, A. & Goswami, B. Eastward propagating MJO during boreal summer and Indian monsoon droughts. Clim. Dyn. 32, 1139–1153 (2009).
    Google Scholar
  5. Jia, X., Chen, L., Ren, F. & Li, C. Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci. 28, 521–533 (2011).
    Google Scholar
  6. Wheeler, M. C., Hendon, H. H., Cleland, S., Meinke, H. & Donald, A. Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J. Clim. 22, 1482–1498 (2009).
    ADS Google Scholar
  7. Pohl, B. & Camberlin, P. Influence of the Madden–Julian oscillation on East African rainfall. I: intraseasonal variability and regional dependency. Q. J. R. Meteorol. Soc. 132, 2521–2539 (2006).
    ADS Google Scholar
  8. Lorenz, D. J. & Hartmann, D. L. The effect of the MJO on the North American monsoon. J. Clim. 19, 333–343 (2006).
    ADS Google Scholar
  9. Grimm, A. M. Madden–Julian Oscillation impacts on South American summer monsoon season: precipitation anomalies, extreme events, teleconnections, and role in the MJO cycle. Clim. Dyn. 53, 1–26 (2019).
    Google Scholar
  10. Carvalho, L. M. V., Jones, C. & Liebmann, B. The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim. 17, 88–108 (2004).
    ADS Google Scholar
  11. Weller, E. et al. Human-caused Indo-Pacific warm pool expansion. Sci. Adv. 2, e1501719 (2016).
    ADS PubMed Central Google Scholar
  12. Lazo, J. K., Lawson, M., Larsen, P. H. & Waldman, D. M. US economic sensitivity to weather variability. Bull. Am. Meteorol. Soc. 92, 709–720 (2011).
    ADS Google Scholar
  13. Bertrand, J.-L. & Brusset, X. Managing the financial consequences of weather variability. J. Asset Manag. 19, 301–315 (2018).
    Google Scholar
  14. Kessler, W. S. EOF representations of the Madden–Julian oscillation and its connection with ENSO. J. Clim. 14, 3055–3061 (2001).
    ADS Google Scholar
  15. Zhang, C. Madden–Julian oscillation: bridging weather and climate. Bull. Am. Meteorol. Soc. 94, 1849–1870 (2013).
    ADS Google Scholar
  16. Cassou, C. Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455, 523–527 (2008).
    ADS CAS PubMed Google Scholar
  17. Stan, C. et al. Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys. 55, 902–937 (2017).
    ADS Google Scholar
  18. Garfinkel, C. I., Feldstein, S. B., Waugh, D. W., Yoo, C. & Lee, S. Observed connection between stratospheric sudden warmings and the Madden–Julian Oscillation. Geophys. Res. Lett. 39, L18807 (2012).
    ADS Google Scholar
  19. Madden, R. A. & Julian, P. R. Observations of the 40–50-day tropical oscillation—a review. Mon. Weath. Rev. 122, 814–837 (1994).
    ADS Google Scholar
  20. Maloney, E. D., Adames, Á. F. & Bui, H. X. Madden–Julian oscillation changes under anthropogenic warming. Nat. Clim. Change 9, 26–33 (2019).
    ADS Google Scholar
  21. Adames, Á. F., Kim, D., Sobel, A. H., Del Genio, A. & Wu, J. Changes in the structure and propagation of the MJO with increasing CO2. J. Adv. Model. Earth Syst. 9, 1251–1268 (2017).
    ADS PubMed PubMed Central Google Scholar
  22. Oliver, E. C. & Thompson, K. R. A reconstruction of Madden–Julian Oscillation variability from 1905 to 2008. J. Clim. 25, 1996–2019 (2012).
    ADS Google Scholar
  23. Oliver, E. C. Blind use of reanalysis data: apparent trends in Madden–Julian Oscillation activity driven by observational changes. Int. J. Climatol. 36, 3458–3468 (2016).
    Google Scholar
  24. Jones, C. & Carvalho, L. M. V. Changes in the activity of the Madden–Julian Oscillation during 1958–2004. J. Clim. 19, 6353–6370 (2006).
    ADS Google Scholar
  25. Pohl, B. & Matthews, A. J. Observed changes in the lifetime and amplitude of the Madden–Julian oscillation associated with interannual ENSO sea surface temperature anomalies. J. Clim. 20, 2659–2674 (2007).
    ADS Google Scholar
  26. Slingo, J. M., Rowell, D. P., Sperber, K. R. & Nortley, E. On the predictability of the interannual behaviour of the Madden–Julian Oscillation and its relationship with El Nino. Q. J. R. Meteorol. Soc. 125, 583–609 (1999).
    ADS Google Scholar
  27. Arnold, N. P., Kuang, Z. & Tziperman, E. Enhanced MJO-like variability at high SST. J. Clim. 26, 988–1001 (2013).
    ADS Google Scholar
  28. Zhang, C. & Ling, J. Barrier effect of the Indo-Pacific Maritime Continent on the MJO: perspectives from tracking MJO precipitation. J. Clim. 30, 3439–3459 (2017).
    ADS Google Scholar
  29. Foltz, G. R. & McPhaden, M. J. The 30–70 day oscillations in the tropical Atlantic. Geophys. Res. Lett. 31, L15205 (2004).
    ADS Google Scholar
  30. Wheeler, M. C. & Hendon, H. H. An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon. Weath. Rev. 132, 1917–1932 (2004).
    ADS Google Scholar
  31. Yoo, C., Feldstein, S. & Lee, S. The impact of the Madden–Julian Oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett. 38, L24804 (2011).
    ADS Google Scholar
  32. Song, E. J. & Seo, K. H. Past-and present-day Madden–Julian Oscillation in CNRM-CM5. Geophys. Res. Lett. 43, 4042–4048 (2016).
    ADS Google Scholar
  33. Roxy, M. Sensitivity of precipitation to sea surface temperature over the tropical summer monsoon region—and its quantification. Clim. Dyn. 43, 1159–1169 (2014).
    Google Scholar
  34. Cravatte, S., Delcroix, T., Zhang, D., McPhaden, M. & Leloup, J. Observed freshening and warming of the western Pacific warm pool. Clim. Dyn. 33, 565–589 (2009).
    Google Scholar
  35. Dong, L. & McPhaden, M. J. The role of external forcing and internal variability in regulating global mean surface temperatures on decadal timescales. Environ. Res. Lett. 12, 034011 (2017).
    ADS Google Scholar
  36. Suematsu, T. & Miura, H. Zonal SST difference as a potential environmental factor supporting the longevity of the Madden–Julian Oscillation. J. Clim. 31, 7549–7564 (2018).
    ADS Google Scholar
  37. Sobel, A., Wang, S. & Kim, D. Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci. 71, 4276–4291 (2014).
    ADS Google Scholar
  38. Kim, D., Kug, J.-S. & Sobel, A. H. Propagating versus nonpropagating Madden–Julian Oscillation events. J. Clim. 27, 111–125 (2014).
    ADS Google Scholar
  39. Gonzalez, A. O. & Jiang, X. Winter mean lower tropospheric moisture over the Maritime Continent as a climate model diagnostic metric for the propagation of the Madden–Julian oscillation. Geophys. Res. Lett. 44, 2588–2596 (2017).
    ADS Google Scholar
  40. Tokinaga, H., Xie, S.-P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443 (2012).
    ADS CAS PubMed Google Scholar
  41. Hermes, J. C. et al. A sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs. Front. Mar. Sci. 6, 355 (2019).
    Google Scholar
  42. Subramanian, A. et al. Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability. Front. Mar. Sci. 6, 427 (2019).
    Google Scholar
  43. Vitart, F. & Robertson, A. W. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Clim. Atmos. Sci. 1, 3 (2018).
    Google Scholar
  44. Straub, K. H. MJO initiation in the real-time multivariate MJO index. J. Clim. 26, 1130–1151 (2013).
    ADS Google Scholar
  45. Liu, P. et al. A revised real-time multivariate MJO index. Mon. Weath. Rev. 144, 627–642 (2016).
    ADS Google Scholar
  46. Wolding, B. O. & Maloney, E. D. Objective diagnostics and the Madden–Julian oscillation. Part II: application to moist static energy and moisture budgets. J. Clim. 28, 7786–7808 (2015).
    ADS Google Scholar
  47. Ventrice, M. J. et al. A modified multivariate Madden–Julian oscillation index using velocity potential. Mon. Weath. Rev. 141, 4197–4210 (2013).
    ADS Google Scholar
  48. Hendon, H. H., Wheeler, M. C. & Zhang, C. Seasonal dependence of the MJO–ENSO relationship. J. Clim. 20, 531–543 (2007).
    ADS Google Scholar
  49. Schreck, C., Lee, H.-T. & Knapp, K. HIRS outgoing longwave radiation—daily climate data record: application toward identifying tropical subseasonal variability. Remote Sens. 10, 1325 (2018).
    ADS Google Scholar
  50. Kikuchi, K., Wang, B. & Kajikawa, Y. Bimodal representation of the tropical intraseasonal oscillation. Clim. Dyn. 38, 1989–2000 (2012).
    Google Scholar
  51. Seo, K.-H. & Kumar, A. The onset and life span of the Madden–Julian oscillation. Theor. Appl. Climatol. 94, 13–24 (2008).
    ADS Google Scholar
  52. Wheeler, M. & Kiladis, G. N. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci. 56, 374–399 (1999).
    ADS Google Scholar
  53. Roundy, P. E., Schreck, C. J. III & Janiga, M. A. Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon. Weath. Rev. 137, 469–478 (2009).
    ADS Google Scholar
  54. Zeileis, A., Kleiber, C., Krämer, W. & Hornik, K. Testing and dating of structural changes in practice. Comput. Stat. Data Anal. 44, 109–123 (2003).
    MathSciNet MATH Google Scholar
  55. Bai, J. & Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econ. 18, 1–22 (2003).
    Google Scholar
  56. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
    MathSciNet MATH Google Scholar
  57. Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality data. Wat. Resour. Res. 18, 107–121 (1982).
    ADS Google Scholar
  58. Cohen, P., West, S. G. & Aiken, L. S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (Psychology Press, 2014).
  59. Kendall, M. G. Rank Correlation Methods 2 edn (C. Griffin, 1948).
  60. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).
    MathSciNet MATH Google Scholar

Download references