Characteristics, drivers and feedbacks of global greening (original) (raw)
References
Bonan, G. B., Pollard, D. & Thompson, S. L. Effects of boreal forest vegetation on global climate. Nature359, 716–718 (1992). Google Scholar
Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA104, 12942–12947 (2007). Google Scholar
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA114, 11645–11650 (2017). Google Scholar
Bastin, J.-F. et al. The global tree restoration potential. Science365, 76–79 (2019). Google Scholar
Tucker, C. J., Fung, I. Y., Keeling, C. D. & Gammon, R. H. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature319, 195–199 (1986). Google Scholar
Fung, I. Y., Tucker, C. J. & Prentice, K. C. Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2. J. Geophys. Res. Atmos.92, 2999–3015 (1987). Google Scholar
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature386, 698–702 (1997). The first study to reveal large-scale vegetation greening over the Northern Hemisphere. Google Scholar
Zhou, L. et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos.106, 20069–20083 (2001). Google Scholar
Goetz, S. J., Bunn, A. G., Fiske, G. J. & Houghton, R. A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl Acad. Sci. USA102, 13521–13525 (2005). Google Scholar
Xu, L. et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change3, 581–586 (2013). Google Scholar
Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change6, 791–795 (2016). A detailed attribution study of global leaf area index change during the past three decades with ensemble dynamic global vegetation models. Google Scholar
Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote. Sens. Environ.176, 1–16 (2016). Google Scholar
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain.2, 122–129 (2019). Demonstrates the pattern of global greening since 2000 with the latest MODIS C6 collection data. Google Scholar
Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science.296, 1687–1689 (2002). Google Scholar
Arneth, A. et al. IPCC special report on climate change and land. Intergovernmental Panel on Climate Change (IPCC)https://www.ipcc.ch/report/srccl/ (2019) (accessed October 2019).
Abram, N. et al. IPCC special report on the ocean and cryosphere in a changing climate. Intergovernmental Panel on Climate Change (IPCC)https://www.ipcc.ch/srocc/home/ (accessed October 2019).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev.9, 1937–1958 (2016). Google Scholar
Swann, A. L. S., Fung, I. Y. & Chiang, J. C. H. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl Acad. Sci. USA109, 712–716 (2012). Google Scholar
Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change7, 432–436 (2017). A quantification of the climatic impacts of vegetation greening through modulating land-atmosphere energy and water exchanges, with an Earth system model forced by satellite-observed LAI change during the past three decades. Google Scholar
de Jong, R., Verbesselt, J., Schaepman, M. E. & De Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol.18, 642–655 (2012). Google Scholar
Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote. Sens. Environ.163, 326–340 (2015). Google Scholar
Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote. Sens. Environ.191, 145–155 (2017). Google Scholar
Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosciences117, G04003 (2012). Google Scholar
Lyapustin, A. et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech.7, 4353–4365 (2014). Google Scholar
Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett.11, 084001 (2016). Google Scholar
Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett.6, 045501 (2011). Google Scholar
Sturm, M., Racine, C. & Tape, K. Climate change: increasing shrub abundance in the Arctic. Nature411, 546–547 (2001). Google Scholar
Frost, G. V. & Epstein, H. E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob. Change Biol.20, 1264–1277 (2014). Google Scholar
Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change5, 887–891 (2015). Google Scholar
Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett.6, 045509 (2011). Google Scholar
Mahowald, N. et al. Projections of leaf area index in earth system models. Earth Syst. Dyn.7, 211–229 (2016). Google Scholar
Bhatt, U. et al. Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote. Sens.5, 4229–4254 (2013). Google Scholar
Verbyla, D. The greening and browning of Alaska based on 1982–2003 satellite data. Glob. Ecol. Biogeogr.17, 547–555 (2008). Google Scholar
Senf, C., Pflugmacher, D., Wulder, M. A. & Hostert, P. Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote. Sens. Environ.170, 166–177 (2015). Google Scholar
Bjerke, J. W. et al. Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Sci. Total. Environ.599, 1965–1976 (2017). Google Scholar
White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C. & Hobart, G. W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote. Sens. Environ.194, 303–321 (2017). Google Scholar
Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett.13, 014007 (2018). Google Scholar
Bi, J., Xu, L., Samanta, A., Zhu, Z. & Myneni, R. Divergent Arctic-boreal vegetation changes between North America and Eurasia over the past 30 years. Remote. Sens.5, 2093–2112 (2013). Google Scholar
Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change.6, 1019–1022 (2016). Google Scholar
Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature509, 86–90 (2014). Google Scholar
Goswami, S., Gamon, J., Vargas, S. & Tweedie, C. Relationships of NDVI, biomass, and leaf area index (LAI) for six key plant species in Barrow, Alaska. PeerJ PrePrints3, e913v1 (2015).
Samanta, A. et al. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett.37, L05401 (2010). Google Scholar
Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science318, 612 (2007). Google Scholar
Asner, G. P. & Alencar, A. Drought impacts on the Amazon forest: the remote sensing perspective. New Phytol.187, 569–578 (2010). Google Scholar
Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote. Sens. Environ.121, 144–158 (2012). Google Scholar
Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science348, 895–899 (2015). Google Scholar
Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change5, 364–368 (2015). Google Scholar
Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol.25, 1922–1940 (2019). Google Scholar
White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol.15, 2335–2359 (2009). Google Scholar
Schwartz, M. D. & Hanes, J. M. Intercomparing multiple measures of the onset of spring in eastern North America. Int. J. Climatol.30, 1614–1626 (2010). Google Scholar
Richardson, A. D., Hufkens, K., Milliman, T. & Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep.8, 5679 (2018). Google Scholar
Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol.17, 2385–2399 (2011). Google Scholar
Keenan et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change4, 598–604 (2014). Google Scholar
Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol.22, 1456–1468 (2016). Google Scholar
Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol.12, 1969–1976 (2006). Google Scholar
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol.22, 357–365 (2007). Google Scholar
Gill, A. L. et al. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann. Bot.116, 875–888 (2015). Google Scholar
Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol.19, 3167–3183 (2013). Google Scholar
Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles21, GB3018 (2007). Google Scholar
Julien, Y. & Sobrino, J. A. Global land surface phenology trends from GIMMS database. Int. J. Remote. Sens.30, 3495–3513 (2009). Google Scholar
Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol.25, 2382–2395 (2019). Google Scholar
Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol.24, 2117–2128 (2018). Google Scholar
Bhatt, U. S. et al. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett.12, 055003 (2017). Google Scholar
Epstein, H. et al. Tundra greenness. In Arctic Report Card 2018. National Oceanic and Atmospheric Administration (NOAA), 46–52 (2018).
Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol.1, 1649–1654 (2017). Google Scholar
Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annu. Rev. Plant. Physiol.33, 317–345 (1982). Google Scholar
Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature499, 324–327 (2013). Google Scholar
Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett.40, 3031–3035 (2013). Google Scholar
Ukkola, A. M., Prentice, I. C., Keenan, T. F., van Dijk, A. I. J. M., Viney, N. R., Myneni, R. B. & Bi, J. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change6, 75–78 (2015). Google Scholar
Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences12, 653–679 (2015). Google Scholar
Ahlbeck, J. R. Comment on “Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981–1999” by L. Zhou et al. J. Geophys. Res. Atmos.107, ACH–9 (2002). Google Scholar
Los, S. O. Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–2006: Indication for a CO2 fertilization effect in global vegetation. Glob. Biogeochem. Cycles27, 318–330 (2013). Google Scholar
Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci.USA107, 19368–19373 (2010). Google Scholar
Dubey, S. K., Tripathi, S. K. & Pranuthi, G. Effect of elevated CO2 on wheat crop: Mechanism and impact. Crit. Rev. Environ. Sci. Technol.45, 2283–2304 (2015). Google Scholar
Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol.165, 351–372 (2005). Google Scholar
Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst.42, 181–203 (2011). Google Scholar
Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol.14, 1531–1542 (2008). Google Scholar
Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA112, 436–441 (2015). Google Scholar
Obermeier, W. A. et al. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Change7, 137–141 (2017). Google Scholar
Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants2, 16132 (2016). Google Scholar
Reich, P. B. & Hobbie, S. E. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat. Clim. Change3, 278–282 (2013). Google Scholar
Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci.7, 920–924 (2014). Google Scholar
Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change9, 684–689 (2019). Google Scholar
Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol.26, 606–613 (2011). Google Scholar
Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol.3, 772–779 (2019). Google Scholar
Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change8, 825–828 (2018). Google Scholar
Braswell, B. H., Schimel, D. S., Linder, E. & Moore, B. III The response of global terrestrial ecosystems to interannual temperature variability. Science278, 870–873 (1997). Google Scholar
Linderholm, H. W. Growing season changes in the last century. Agric. For. Meteorol.137, 1–14 (2006). Google Scholar
Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond.365, 3227–3246 (2010). Google Scholar
Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun.5, 5018 (2014). Discusses the weakening temperature impacts on northern vegetation greenness since the 1980s. Google Scholar
Vickers, H. et al. Changes in greening in the high Arctic: insights from a 30 year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett.11, 105004 (2016). Google Scholar
Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science300, 1560–1563 (2003). Google Scholar
Eklundh, L. & Olsson, L. Vegetation index trends for the African Sahel 1982–1999. Geophys. Res. Lett.30, 1430 (2003). Google Scholar
Anyamba, A. & Tucker, C. J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid. Environ.63, 596–614 (2005). Google Scholar
Donohue, R. J., McVicar, T. R. & Roderick, M. L. Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob. Change Biol.15, 1025–1039 (2009). Google Scholar
Herrmann, S. M., Anyamba, A. & Tucker, C. J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Change15, 394–404 (2005). Google Scholar
Hickler, T. et al. Precipitation controls Sahel greening trend. Geophys. Res. Lett.32, L21415 (2005). Google Scholar
Huber, S., Fensholt, R. & Rasmussen, K. Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Glob. Planet. Change76, 186–195 (2011). Google Scholar
Dardel, C. et al. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote. Sens. Environ.140, 350–364 (2014). Google Scholar
Brandt, M. et al. Changes in rainfall distribution promote woody foliage production in the Sahel. Commun. Biol.2, 133 (2019). Google Scholar
Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol.1, 0081 (2017). Google Scholar
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science361, 1108–1111 (2018). Google Scholar
Eighth National Forest Resource Inventory Report (2009–2013) (State Forestry Administration of the People’s Republic of China, 2014).
Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change4, 389–393 (2014). Google Scholar
Song, X.-P. et al. Global land change from 1982 to 2016. Nature560, 639–643 (2018). Google Scholar
Poulter, B. et al. The global forest age dataset and its uncertainties (GFADv1.1). NASA National Aeronautics and Space Administration, PANGAEAhttps://doi.org/10.1594/PANGAEA.897392 (2019).
Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature440, 922–925 (2006). Google Scholar
Penuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun.4, 2934 (2013). Google Scholar
Greaver, T. L. et al. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Change6, 836–843 (2016). Google Scholar
Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies. New Phytol.202, 803–822 (2014). Google Scholar
Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data10, 2141–2194 (2018). Google Scholar
Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun.10, 4259 (2019). Google Scholar
van Dijk, A. I. J. M., Dolman, A. J. & Schulze, E.-D. Radiation, temperature, and leaf area explain ecosystem carbon fluxes in boreal and temperate European forests. Glob. Biogeochem. Cycles19, GB2029 (2005). Google Scholar
Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences15, 5779–5800 (2018). Google Scholar
Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun.8, 110 (2017). Google Scholar
Winkler, A. J., Myneni, R. B., Alexandrov, G. A. & Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun.10, 885 (2019). Google Scholar
Shevliakova, E. et al. Historical warming reduced due to enhanced land carbon uptake. Proc. Natl Acad. Sci. USA110, 16730–16735 (2013). Google Scholar
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science333, 988–993 (2011). Google Scholar
Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change5, 470–474 (2015). Google Scholar
Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun.7, 13428 (2016). Google Scholar
Piao, S. et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci.11, 739–743 (2018). Google Scholar
Kondo, M. et al. Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake. Geophys. Res. Lett.45, 4820–4830 (2018). Google Scholar
Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA116, 4382–4387 (2019). Google Scholar
Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science351, 597–600 (2016). Google Scholar
Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature382, 146–149 (1996). Google Scholar
Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science341, 1085–1089 (2013). Google Scholar
Piao, S. et al. On the causes of trends in the seasonal amplitude of atmospheric CO2. Glob. Change Biol.24, 608–616 (2018). Google Scholar
Forkel, M. et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science351, 696–699 (2016). Presents the linkage between increasing photosynthesis of northern vegetation and the enlarging seasonal CO2amplitude. Google Scholar
Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change7, 359–363 (2017). Google Scholar
Barichivich, J., Briffa, K. R., Osborn, T. J., Melvin, T. M. & Caesar, J. Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob. Biogeochem. Cycles26, GB4015 (2012). Google Scholar
Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature451, 49–52 (2008). Google Scholar
Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science351, 600–604 (2016). Presents evidence for feedbacks of forest cover change to land-surface temperature and its regional disparities. Google Scholar
Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci.4, 514–518 (2011). Google Scholar
Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature496, 347–350 (2013). Google Scholar
Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science349, 175–177 (2015). Google Scholar
Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change8, 640–646 (2018). Google Scholar
Bernacchi, C. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant. Biol.66, 599–622 (2015). Google Scholar
Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep.6, 19124 (2016). Google Scholar
Zeng, Z., Peng, L. & Piao, S. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Environ. Sustain.33, 9–25 (2018). Google Scholar
Bosch, J. M. & Hewlett, J. D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol.55, 3–23 (1982). Google Scholar
Evaristo, J. & McDonnell, J. J. Global analysis of streamflow response to forest management. Nature570, 455–461 (2019). Google Scholar
Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci.9, 38–41 (2016). Google Scholar
Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv.4, eaar4182 (2018). Google Scholar
Zeng, Z. et al. Impact of Earth greening on the terrestrial water cycle. J. Clim.31, 2633–2650 (2018). Google Scholar
van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res.46, W09525 (2010). Discusses the importance of land evapotranspiration to sustain downwind precipitation. Google Scholar
Teuling, A. J. et al. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun.8, 14065 (2017). Google Scholar
Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature489, 282–285 (2012). Google Scholar
Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature562, 110–114 (2018). Google Scholar
Bonan, G. B. Forests, climate, and public policy: A 500-year interdisciplinary odyssey. Annu. Rev. Ecol. Evol. Syst.47, 97–121 (2016). Google Scholar
Davin, E. L. & de Noblet-Ducoudré, N. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Clim.23, 97–112 (2010). Google Scholar
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science320, 1444–1449 (2008). Google Scholar
Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature479, 384–387 (2011). Google Scholar
Winckler, J., Lejeune, Q., Reick, C. H. & Pongratz, J. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett.46, 745–755 (2019). Google Scholar
Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci.10, 410–414 (2017). Google Scholar
Devaraju, N., de Noblet-Ducoudré, N., Quesada, B. & Bala, G. Quantifying the relative importance of direct and indirect biophysical effects of deforestation on surface temperature and teleconnections. J. Clim.31, 3811–3829 (2018). Google Scholar
Bateni, S. M. & Entekhabi, D. Relative efficiency of land surface energy balance components. Water Resour. Res.48, 4510 (2012). Google Scholar
Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science356, 1180–1184 (2017). Google Scholar
Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature408, 187–190 (2000). Google Scholar
Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl Acad. Sci. USA112, 9299–9304 (2015). Google Scholar
Jeong, S., Ho, C., Kim, K. & Jeong, J. Reduction of spring warming over East Asia associated with vegetation feedback. Geophys. Res. Lett.36, L18705 (2009). Google Scholar
Essery, R. Large-scale simulations of snow albedo masking by forests. Geophys. Res. Lett.40, 5521–5525 (2013). Google Scholar
Thackeray, C. W., Fletcher, C. G. & Derksen, C. The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. J. Geophys. Res. Atmos.119, 9810–9821 (2014). Google Scholar
Wang, L. et al. Investigating the spread in surface albedo for snow-covered forests in CMIP5 models. J. Geophys. Res. Atmos.121, 1104–1119 (2016). Google Scholar
National Academies of Sciences, Engineering, and Medicine. Thriving on our changing planet: A decadal strategy for Earth observation from space (National Academies Press, 2018) https://doi.org/10.17226/24938.
Metcalfe, D. B. et al. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol.2, 1443–1448 (2018). Google Scholar
Schimel, D. et al. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Change Biol.21, 1762–1776 (2015). Google Scholar
Park, D. S. et al. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20170394 (2018). Google Scholar
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature566, 195–204 (2019). Google Scholar
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage.259, 660–684 (2010). Google Scholar
Sturrock, R. N. et al. Climate change and forest diseases. Plant. Pathol.60, 133–149 (2011). Google Scholar
Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett.11, 085004 (2016). Google Scholar
Matasci, G. et al. Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots. Remote. Sens. Environ.216, 697–714 (2018). Google Scholar
Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature559, 527–534 (2018). Google Scholar
Esau, I., Miles, V. V., Davy, R., Miles, M. W. & Kurchatova, A. Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia. Atmos. Chem. Phys.16, 9563–9577 (2016). Google Scholar
Knyazikhin, Y. et al. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl Acad. Sci. USA110, E185–E192 (2013). Google Scholar
Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote. Sens. Environ.8, 127–150 (1979). Google Scholar
Bannari, A., Morin, D., Bonn, F. & Huete, A. R. A review of vegetation indices. Remote. Sens. Rev.13, 95–120 (1995). Google Scholar
Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote. Sens.33, 481–486 (1995). Google Scholar
Xue, J. & Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens.2017, 1353691 (2017). Google Scholar
Ganguly, S. et al. Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote. Sens. Environ.112, 4318–4332 (2008). Google Scholar
Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote. Sens.5, 927–948 (2013). Google Scholar
Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote. Sens.6, 6929–6960 (2014). Discusses complexities and challenges in detecting greenness change with the longest available NDVI dataset (AVHRR NDVI) since the 1980s. Google Scholar
Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J. & Running, S. W. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. Atmos.103, 32257–32275 (1998). Google Scholar
Chen, J. M. & Black, T. A. Defining leaf area index for non-flat leaves. Plant. Cell Environ.15, 421–429 (1992). Google Scholar
Asrar, G. Q., Fuchs, M., Kanemasu, E. T. & Hatfield, J. L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat 1. Agron. J.76, 300–306 (1984). Google Scholar
Cohen, W. B., Maiersperger, T. K., Gower, S. T. & Turner, D. P. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote. Sens. Environ.84, 561–571 (2003). Google Scholar
Baret, F. et al. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote. Sens. Environ.137, 299–309 (2013). Google Scholar
Claverie, M., Matthews, J., Vermote, E. & Justice, C. A 30+ year AVHRR LAI and FAPAR climate data record: Algorithm description and validation. Remote. Sens.8, 263 (2016). Google Scholar
Ross, J. K. & Marshak, A. L. Calculation of canopy bidirectional reflectance using the Monte Carlo method. Remote. Sens. Environ.24, 213–225 (1988). Google Scholar
Yang, B. et al. Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis. Remote. Sens. Environ.198, 69–84 (2017). Google Scholar
Xiao, Z. et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote. Sens.54, 5301–5318 (2016). Google Scholar
Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H MODIS/terra leaf area index/FPAR 8-day L4 global 500 m SIN grid V006. NASA EOSDIS L. Process. DAAC (2015).
Tucker, C. J. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote. Sens.26, 4485–4498 (2005). Google Scholar
Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote. Sens. Environ.83, 195–213 (2002). Google Scholar
Maisongrande, P., Duchemin, B. & Dedieu, G. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote. Sens.25, 9–14 (2004). Google Scholar
Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv.3, e1602244 (2017). Google Scholar
Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change6, 306–310 (2016). Google Scholar