Characteristics, drivers and feedbacks of global greening (original) (raw)

References

  1. Bonan, G. B., Pollard, D. & Thompson, S. L. Effects of boreal forest vegetation on global climate. Nature 359, 716–718 (1992).
    Google Scholar
  2. Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).
    Google Scholar
  3. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    Google Scholar
  4. Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    Google Scholar
  5. Tucker, C. J., Fung, I. Y., Keeling, C. D. & Gammon, R. H. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature 319, 195–199 (1986).
    Google Scholar
  6. Fung, I. Y., Tucker, C. J. & Prentice, K. C. Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2. J. Geophys. Res. Atmos. 92, 2999–3015 (1987).
    Google Scholar
  7. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997). The first study to reveal large-scale vegetation greening over the Northern Hemisphere.
    Google Scholar
  8. Zhou, L. et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 106, 20069–20083 (2001).
    Google Scholar
  9. Goetz, S. J., Bunn, A. G., Fiske, G. J. & Houghton, R. A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl Acad. Sci. USA 102, 13521–13525 (2005).
    Google Scholar
  10. Xu, L. et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change 3, 581–586 (2013).
    Google Scholar
  11. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016). A detailed attribution study of global leaf area index change during the past three decades with ensemble dynamic global vegetation models.
    Google Scholar
  12. Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote. Sens. Environ. 176, 1–16 (2016).
    Google Scholar
  13. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019). Demonstrates the pattern of global greening since 2000 with the latest MODIS C6 collection data.
    Google Scholar
  14. Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science. 296, 1687–1689 (2002).
    Google Scholar
  15. Arneth, A. et al. IPCC special report on climate change and land. Intergovernmental Panel on Climate Change (IPCC) https://www.ipcc.ch/report/srccl/ (2019) (accessed October 2019).
  16. Abram, N. et al. IPCC special report on the ocean and cryosphere in a changing climate. Intergovernmental Panel on Climate Change (IPCC) https://www.ipcc.ch/srocc/home/ (accessed October 2019).
  17. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).
    Google Scholar
  18. Swann, A. L. S., Fung, I. Y. & Chiang, J. C. H. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl Acad. Sci. USA 109, 712–716 (2012).
    Google Scholar
  19. Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436 (2017). A quantification of the climatic impacts of vegetation greening through modulating land-atmosphere energy and water exchanges, with an Earth system model forced by satellite-observed LAI change during the past three decades.
    Google Scholar
  20. de Jong, R., Verbesselt, J., Schaepman, M. E. & De Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).
    Google Scholar
  21. Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote. Sens. Environ. 163, 326–340 (2015).
    Google Scholar
  22. Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote. Sens. Environ. 191, 145–155 (2017).
    Google Scholar
  23. Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosciences 117, G04003 (2012).
    Google Scholar
  24. Lyapustin, A. et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 7, 4353–4365 (2014).
    Google Scholar
  25. Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 11, 084001 (2016).
    Google Scholar
  26. Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).
    Google Scholar
  27. Sturm, M., Racine, C. & Tape, K. Climate change: increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).
    Google Scholar
  28. Frost, G. V. & Epstein, H. E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob. Change Biol. 20, 1264–1277 (2014).
    Google Scholar
  29. Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
    Google Scholar
  30. Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).
    Google Scholar
  31. Mahowald, N. et al. Projections of leaf area index in earth system models. Earth Syst. Dyn. 7, 211–229 (2016).
    Google Scholar
  32. Bhatt, U. et al. Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote. Sens. 5, 4229–4254 (2013).
    Google Scholar
  33. Verbyla, D. The greening and browning of Alaska based on 1982–2003 satellite data. Glob. Ecol. Biogeogr. 17, 547–555 (2008).
    Google Scholar
  34. Senf, C., Pflugmacher, D., Wulder, M. A. & Hostert, P. Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote. Sens. Environ. 170, 166–177 (2015).
    Google Scholar
  35. Bjerke, J. W. et al. Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Sci. Total. Environ. 599, 1965–1976 (2017).
    Google Scholar
  36. White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C. & Hobart, G. W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote. Sens. Environ. 194, 303–321 (2017).
    Google Scholar
  37. Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 13, 014007 (2018).
    Google Scholar
  38. Bi, J., Xu, L., Samanta, A., Zhu, Z. & Myneni, R. Divergent Arctic-boreal vegetation changes between North America and Eurasia over the past 30 years. Remote. Sens. 5, 2093–2112 (2013).
    Google Scholar
  39. Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change. 6, 1019–1022 (2016).
    Google Scholar
  40. Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).
    Google Scholar
  41. Goswami, S., Gamon, J., Vargas, S. & Tweedie, C. Relationships of NDVI, biomass, and leaf area index (LAI) for six key plant species in Barrow, Alaska. PeerJ PrePrints 3, e913v1 (2015).
  42. Samanta, A. et al. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 37, L05401 (2010).
    Google Scholar
  43. Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).
    Google Scholar
  44. Asner, G. P. & Alencar, A. Drought impacts on the Amazon forest: the remote sensing perspective. New Phytol. 187, 569–578 (2010).
    Google Scholar
  45. Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote. Sens. Environ. 121, 144–158 (2012).
    Google Scholar
  46. Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).
    Google Scholar
  47. Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).
    Google Scholar
  48. Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar
  49. White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol. 15, 2335–2359 (2009).
    Google Scholar
  50. Schwartz, M. D. & Hanes, J. M. Intercomparing multiple measures of the onset of spring in eastern North America. Int. J. Climatol. 30, 1614–1626 (2010).
    Google Scholar
  51. Richardson, A. D., Hufkens, K., Milliman, T. & Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep. 8, 5679 (2018).
    Google Scholar
  52. Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399 (2011).
    Google Scholar
  53. Keenan et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).
    Google Scholar
  54. Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016).
    Google Scholar
  55. Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).
    Google Scholar
  56. Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).
    Google Scholar
  57. Gill, A. L. et al. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann. Bot. 116, 875–888 (2015).
    Google Scholar
  58. Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).
    Google Scholar
  59. Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).
    Google Scholar
  60. Julien, Y. & Sobrino, J. A. Global land surface phenology trends from GIMMS database. Int. J. Remote. Sens. 30, 3495–3513 (2009).
    Google Scholar
  61. Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol. 25, 2382–2395 (2019).
    Google Scholar
  62. Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol. 24, 2117–2128 (2018).
    Google Scholar
  63. Bhatt, U. S. et al. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett. 12, 055003 (2017).
    Google Scholar
  64. Epstein, H. et al. Tundra greenness. In Arctic Report Card 2018. National Oceanic and Atmospheric Administration (NOAA), 46–52 (2018).
  65. Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1, 1649–1654 (2017).
    Google Scholar
  66. Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annu. Rev. Plant. Physiol. 33, 317–345 (1982).
    Google Scholar
  67. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).
    Google Scholar
  68. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).
    Google Scholar
  69. Ukkola, A. M., Prentice, I. C., Keenan, T. F., van Dijk, A. I. J. M., Viney, N. R., Myneni, R. B. & Bi, J. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2015).
    Google Scholar
  70. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).
    Google Scholar
  71. Ahlbeck, J. R. Comment on “Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981–1999” by L. Zhou et al. J. Geophys. Res. Atmos. 107, ACH–9 (2002).
    Google Scholar
  72. Los, S. O. Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–2006: Indication for a CO2 fertilization effect in global vegetation. Glob. Biogeochem. Cycles 27, 318–330 (2013).
    Google Scholar
  73. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci.USA 107, 19368–19373 (2010).
    Google Scholar
  74. Dubey, S. K., Tripathi, S. K. & Pranuthi, G. Effect of elevated CO2 on wheat crop: Mechanism and impact. Crit. Rev. Environ. Sci. Technol. 45, 2283–2304 (2015).
    Google Scholar
  75. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).
    Google Scholar
  76. Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).
    Google Scholar
  77. Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14, 1531–1542 (2008).
    Google Scholar
  78. Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).
    Google Scholar
  79. Obermeier, W. A. et al. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Change 7, 137–141 (2017).
    Google Scholar
  80. Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).
    Google Scholar
  81. Reich, P. B. & Hobbie, S. E. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat. Clim. Change 3, 278–282 (2013).
    Google Scholar
  82. Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).
    Google Scholar
  83. Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).
    Google Scholar
  84. Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. 26, 606–613 (2011).
    Google Scholar
  85. Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).
    Google Scholar
  86. Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–828 (2018).
    Google Scholar
  87. Braswell, B. H., Schimel, D. S., Linder, E. & Moore, B. III The response of global terrestrial ecosystems to interannual temperature variability. Science 278, 870–873 (1997).
    Google Scholar
  88. Linderholm, H. W. Growing season changes in the last century. Agric. For. Meteorol. 137, 1–14 (2006).
    Google Scholar
  89. Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. 365, 3227–3246 (2010).
    Google Scholar
  90. Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014). Discusses the weakening temperature impacts on northern vegetation greenness since the 1980s.
    Google Scholar
  91. Vickers, H. et al. Changes in greening in the high Arctic: insights from a 30 year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. 11, 105004 (2016).
    Google Scholar
  92. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).
    Google Scholar
  93. Eklundh, L. & Olsson, L. Vegetation index trends for the African Sahel 1982–1999. Geophys. Res. Lett. 30, 1430 (2003).
    Google Scholar
  94. Anyamba, A. & Tucker, C. J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid. Environ. 63, 596–614 (2005).
    Google Scholar
  95. Donohue, R. J., McVicar, T. R. & Roderick, M. L. Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob. Change Biol. 15, 1025–1039 (2009).
    Google Scholar
  96. Herrmann, S. M., Anyamba, A. & Tucker, C. J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Change 15, 394–404 (2005).
    Google Scholar
  97. Hickler, T. et al. Precipitation controls Sahel greening trend. Geophys. Res. Lett. 32, L21415 (2005).
    Google Scholar
  98. Huber, S., Fensholt, R. & Rasmussen, K. Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Glob. Planet. Change 76, 186–195 (2011).
    Google Scholar
  99. Dardel, C. et al. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote. Sens. Environ. 140, 350–364 (2014).
    Google Scholar
  100. Brandt, M. et al. Changes in rainfall distribution promote woody foliage production in the Sahel. Commun. Biol. 2, 133 (2019).
    Google Scholar
  101. Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 0081 (2017).
    Google Scholar
  102. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
    Google Scholar
  103. Eighth National Forest Resource Inventory Report (2009–2013) (State Forestry Administration of the People’s Republic of China, 2014).
  104. Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393 (2014).
    Google Scholar
  105. Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).
    Google Scholar
  106. Poulter, B. et al. The global forest age dataset and its uncertainties (GFADv1.1). NASA National Aeronautics and Space Administration, PANGAEA https://doi.org/10.1594/PANGAEA.897392 (2019).
  107. Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440, 922–925 (2006).
    Google Scholar
  108. Penuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).
    Google Scholar
  109. Greaver, T. L. et al. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Change 6, 836–843 (2016).
    Google Scholar
  110. Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies. New Phytol. 202, 803–822 (2014).
    Google Scholar
  111. Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
    Google Scholar
  112. Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).
    Google Scholar
  113. van Dijk, A. I. J. M., Dolman, A. J. & Schulze, E.-D. Radiation, temperature, and leaf area explain ecosystem carbon fluxes in boreal and temperate European forests. Glob. Biogeochem. Cycles 19, GB2029 (2005).
    Google Scholar
  114. Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).
    Google Scholar
  115. Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).
    Google Scholar
  116. Winkler, A. J., Myneni, R. B., Alexandrov, G. A. & Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun. 10, 885 (2019).
    Google Scholar
  117. Shevliakova, E. et al. Historical warming reduced due to enhanced land carbon uptake. Proc. Natl Acad. Sci. USA 110, 16730–16735 (2013).
    Google Scholar
  118. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
    Google Scholar
  119. Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).
    Google Scholar
  120. Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).
    Google Scholar
  121. Piao, S. et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 11, 739–743 (2018).
    Google Scholar
  122. Kondo, M. et al. Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake. Geophys. Res. Lett. 45, 4820–4830 (2018).
    Google Scholar
  123. Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).
    Google Scholar
  124. Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351, 597–600 (2016).
    Google Scholar
  125. Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).
    Google Scholar
  126. Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).
    Google Scholar
  127. Piao, S. et al. On the causes of trends in the seasonal amplitude of atmospheric CO2. Glob. Change Biol. 24, 608–616 (2018).
    Google Scholar
  128. Forkel, M. et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351, 696–699 (2016). Presents the linkage between increasing photosynthesis of northern vegetation and the enlarging seasonal CO 2 amplitude.
    Google Scholar
  129. Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).
    Google Scholar
  130. Barichivich, J., Briffa, K. R., Osborn, T. J., Melvin, T. M. & Caesar, J. Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob. Biogeochem. Cycles 26, GB4015 (2012).
    Google Scholar
  131. Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).
    Google Scholar
  132. Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016). Presents evidence for feedbacks of forest cover change to land-surface temperature and its regional disparities.
    Google Scholar
  133. Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514–518 (2011).
    Google Scholar
  134. Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).
    Google Scholar
  135. Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).
    Google Scholar
  136. Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).
    Google Scholar
  137. Bernacchi, C. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant. Biol. 66, 599–622 (2015).
    Google Scholar
  138. Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).
    Google Scholar
  139. Zeng, Z., Peng, L. & Piao, S. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Environ. Sustain. 33, 9–25 (2018).
    Google Scholar
  140. Bosch, J. M. & Hewlett, J. D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 55, 3–23 (1982).
    Google Scholar
  141. Evaristo, J. & McDonnell, J. J. Global analysis of streamflow response to forest management. Nature 570, 455–461 (2019).
    Google Scholar
  142. Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).
    Google Scholar
  143. Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).
    Google Scholar
  144. Zeng, Z. et al. Impact of Earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).
    Google Scholar
  145. van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010). Discusses the importance of land evapotranspiration to sustain downwind precipitation.
    Google Scholar
  146. Teuling, A. J. et al. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun. 8, 14065 (2017).
    Google Scholar
  147. Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).
    Google Scholar
  148. Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).
    Google Scholar
  149. Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. (in the press) https://doi.org/10.1126/sciadv.aax0255.
    Google Scholar
  150. Bonan, G. B. Forests, climate, and public policy: A 500-year interdisciplinary odyssey. Annu. Rev. Ecol. Evol. Syst. 47, 97–121 (2016).
    Google Scholar
  151. Davin, E. L. & de Noblet-Ducoudré, N. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).
    Google Scholar
  152. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
    Google Scholar
  153. Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).
    Google Scholar
  154. Winckler, J., Lejeune, Q., Reick, C. H. & Pongratz, J. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett. 46, 745–755 (2019).
    Google Scholar
  155. Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).
    Google Scholar
  156. Devaraju, N., de Noblet-Ducoudré, N., Quesada, B. & Bala, G. Quantifying the relative importance of direct and indirect biophysical effects of deforestation on surface temperature and teleconnections. J. Clim. 31, 3811–3829 (2018).
    Google Scholar
  157. Bateni, S. M. & Entekhabi, D. Relative efficiency of land surface energy balance components. Water Resour. Res. 48, 4510 (2012).
    Google Scholar
  158. Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).
    Google Scholar
  159. Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).
    Google Scholar
  160. Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl Acad. Sci. USA 112, 9299–9304 (2015).
    Google Scholar
  161. Jeong, S., Ho, C., Kim, K. & Jeong, J. Reduction of spring warming over East Asia associated with vegetation feedback. Geophys. Res. Lett. 36, L18705 (2009).
    Google Scholar
  162. Essery, R. Large-scale simulations of snow albedo masking by forests. Geophys. Res. Lett. 40, 5521–5525 (2013).
    Google Scholar
  163. Thackeray, C. W., Fletcher, C. G. & Derksen, C. The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. J. Geophys. Res. Atmos. 119, 9810–9821 (2014).
    Google Scholar
  164. Wang, L. et al. Investigating the spread in surface albedo for snow-covered forests in CMIP5 models. J. Geophys. Res. Atmos. 121, 1104–1119 (2016).
    Google Scholar
  165. National Academies of Sciences, Engineering, and Medicine. Thriving on our changing planet: A decadal strategy for Earth observation from space (National Academies Press, 2018) https://doi.org/10.17226/24938.
  166. Metcalfe, D. B. et al. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2, 1443–1448 (2018).
    Google Scholar
  167. Schimel, D. et al. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Change Biol. 21, 1762–1776 (2015).
    Google Scholar
  168. Park, D. S. et al. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20170394 (2018).
    Google Scholar
  169. Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
    Google Scholar
  170. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).
    Google Scholar
  171. Sturrock, R. N. et al. Climate change and forest diseases. Plant. Pathol. 60, 133–149 (2011).
    Google Scholar
  172. Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 11, 085004 (2016).
    Google Scholar
  173. Matasci, G. et al. Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots. Remote. Sens. Environ. 216, 697–714 (2018).
    Google Scholar
  174. Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).
    Google Scholar
  175. Esau, I., Miles, V. V., Davy, R., Miles, M. W. & Kurchatova, A. Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia. Atmos. Chem. Phys. 16, 9563–9577 (2016).
    Google Scholar
  176. Knyazikhin, Y. et al. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl Acad. Sci. USA 110, E185–E192 (2013).
    Google Scholar
  177. Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote. Sens. Environ. 8, 127–150 (1979).
    Google Scholar
  178. Bannari, A., Morin, D., Bonn, F. & Huete, A. R. A review of vegetation indices. Remote. Sens. Rev. 13, 95–120 (1995).
    Google Scholar
  179. Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote. Sens. 33, 481–486 (1995).
    Google Scholar
  180. Xue, J. & Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 1353691 (2017).
    Google Scholar
  181. Ganguly, S. et al. Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote. Sens. Environ. 112, 4318–4332 (2008).
    Google Scholar
  182. Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote. Sens. 5, 927–948 (2013).
    Google Scholar
  183. Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote. Sens. 6, 6929–6960 (2014). Discusses complexities and challenges in detecting greenness change with the longest available NDVI dataset (AVHRR NDVI) since the 1980s.
    Google Scholar
  184. Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J. & Running, S. W. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. Atmos. 103, 32257–32275 (1998).
    Google Scholar
  185. Chen, J. M. & Black, T. A. Defining leaf area index for non-flat leaves. Plant. Cell Environ. 15, 421–429 (1992).
    Google Scholar
  186. Asrar, G. Q., Fuchs, M., Kanemasu, E. T. & Hatfield, J. L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat 1. Agron. J. 76, 300–306 (1984).
    Google Scholar
  187. Cohen, W. B., Maiersperger, T. K., Gower, S. T. & Turner, D. P. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote. Sens. Environ. 84, 561–571 (2003).
    Google Scholar
  188. Baret, F. et al. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote. Sens. Environ. 137, 299–309 (2013).
    Google Scholar
  189. Claverie, M., Matthews, J., Vermote, E. & Justice, C. A 30+ year AVHRR LAI and FAPAR climate data record: Algorithm description and validation. Remote. Sens. 8, 263 (2016).
    Google Scholar
  190. Ross, J. K. & Marshak, A. L. Calculation of canopy bidirectional reflectance using the Monte Carlo method. Remote. Sens. Environ. 24, 213–225 (1988).
    Google Scholar
  191. Yang, B. et al. Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis. Remote. Sens. Environ. 198, 69–84 (2017).
    Google Scholar
  192. Xiao, Z. et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote. Sens. 54, 5301–5318 (2016).
    Google Scholar
  193. Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H MODIS/terra leaf area index/FPAR 8-day L4 global 500 m SIN grid V006. NASA EOSDIS L. Process. DAAC (2015).
  194. Tucker, C. J. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote. Sens. 26, 4485–4498 (2005).
    Google Scholar
  195. Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote. Sens. Environ. 83, 195–213 (2002).
    Google Scholar
  196. Maisongrande, P., Duchemin, B. & Dedieu, G. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote. Sens. 25, 9–14 (2004).
    Google Scholar
  197. Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, e1602244 (2017).
    Google Scholar
  198. Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).
    Google Scholar

Download references