Davis, R. J. & Schaeffer, O. A. Chlorine-36 in nature. Ann. N.Y. Acad. Aci.62, 105–122 (1955). ADS Google Scholar
Suter, M. et al. Precision-measurements of C-14 in AMS — some results and prospects. Nucl Instrum Methods Phys Res B5, 117–122 (1984). ADS Google Scholar
Graf, T., Kohl, C. P., Marti, K. & Nishiizumi, K. Cosmic-ray produced neon in antarctic rocks. Geophys. Res. Lett.18, 203–206 (1991). ADS Google Scholar
Kurz, M. D. Cosmogenic helium in a terrestrial igneous rock. Nature320, 435–439 (1986). ADS Google Scholar
Lal, D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet. Sci. Lett.104, 424–439 (1991). ADS Google Scholar
Nishiizumi, K., Lal, D., Klein, R., Middleton, R. & Arnold, J. R. Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates. Nature319, 134–136 (1986). ADS Google Scholar
Phillips, F. M., Leavy, B. D., Jannik, N. O., Elmore, D. & Kubik, P. W. The accumulation pf cosmogenic Cl-36 in rocks — a method for surface exposure dating. Science231, 41–43 (1986). ADS Google Scholar
Balco, G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quat. Sci. Rev.30, 3–27 (2011). ADS Google Scholar
Balco, G. Glacier change and paleoclimate applications of cosmogenic-nuclide exposure dating. Annu. Rev. Earth Planet. Sci.48, 21–48 (2020). ADS Google Scholar
Cerling, T. E. & Craig, H. Geomorphology and in-situ cosmogenic isotopes. Annu. Rev. Earth Planet. Sci.22, 273–317 (1994). ADS Google Scholar
Gosse, J. C. & Phillips, F. M. Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev.20, 1475–1560 (2001). ADS Google Scholar
Kurz, M. D. & Brook, E. J. in Dating in Exposed and Surface Contexts (ed. Beck, C.) 139–159 (Univ. New Mexico Press, 1994).
Blard, P. H., Bourles, D., Lave, J. & Pik, R. Applications of ancient cosmic-ray exposures: theory, techniques and limitations. Quat. Geochronol.1, 59–73 (2006). Google Scholar
Brown, L., Klein, J., Middleton, R., Sacks, I. S. & Tera, F. BE-10 in island-arc volcanos and implications for subduction. Nature299, 718–720 (1982). ADS Google Scholar
Ivy-Ochs, S., Schlüchter, C., Prentice, M., Kubik, P. W. & Beer, J. 10Be and 26Al exposure ages for the Sirius Group at Mt. Fleming, Mt. Feather and the plateau surface at Table Mt. The Antarctic Region: Geological Evolution and Processeshttps://www.dora.lib4ri.ch/eawag/islandora/object/eawag:4487 (1997).
Balco, G. Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating. Geochronology2, 169–175 (2020). ADS Google Scholar
Putnam, A. E., Bromley, G. R. M., Rademaker, K. & Schaefer, J. M. In situ Be-10 production-rate calibration from a C-14-dated late-glacial moraine belt in Rannoch Moor, central Scottish Highlands. Quat. Geochronol.50, 109–125 (2019). Google Scholar
Granger, D. E. & Muzikar, P. F. Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth Planet. Sci. Lett.188, 269–281 (2001). ADS Google Scholar
Corbett, L. B. et al. Cosmogenic Al-26/Be-10 surface production ratio in Greenland. Geophys. Res. Lett.44, 1350–1359 (2017). ADS Google Scholar
Balco, G. & Shuster, D. L. Al-26–Be-10–Ne-21 burial dating. Earth Planet. Sci. Lett.286, 570–575 (2009). ADS Google Scholar
Nishiizumi, K. Preparation of Al-26 AMS standards. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At.223, 388–392 (2004). ADS Google Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K. & Jakob, D. Determination of the Be-10 half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.268, 192–199 (2010). ADS Google Scholar
Korschinek, G. et al. A new value for the half-life of Be-10 by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.268, 187–191 (2010). ADS Google Scholar
von Blanckenburg, F. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett.237, 462–479 (2005). ADS Google Scholar
Willenbring, J. K. & von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature465, 211–214 (2010). ADS Google Scholar
Willenbring, J. K. & von Blanckenburg, F. Meteoric cosmogenic beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics. Earth Sci. Rev.98, 105–122 (2010). ADS Google Scholar
Wittmann, H., Malusa, M. G., Resentini, A., Garzanti, E. & Niedermann, S. The cosmogenic record of mountain erosion transmitted across a foreland basin: source-to-sink analysis of in situ Be-10, Al-26 and Ne-21 in sediment of the Po river catchment. Earth Planet. Sci. Lett.452, 258–271 (2016). ADS Google Scholar
Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J. L. & Kubik, P. W. Recycling of Amazon floodplain sediment quantified by cosmogenic Al-26 and Be-10. Geology39, 467–470 (2011). ADS Google Scholar
Beer, J. et al. Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature331, 675–679 (1988). ADSMathSciNet Google Scholar
Loosli, H. H. & Oeschger, H. 37Ar and 81Kr in the atmosphere. Earth Planet. Sci. Lett.7, 67–78 (1969). ADS Google Scholar
Loosli, H. H. A dating method with Ar-39. Earth Planet. Sci. Lett.63, 51–62 (1983). ADS Google Scholar
Lu, Z. T. et al. Tracer applications of noble gas radionuclides in the geosciences. Earth Sci. Rev.138, 196–214 (2014). ADS Google Scholar
Tian, L. et al. Kr-81 dating at the guliya ice cap, Tibetan Plateau. Geophys. Res. Lett.46, 6636–6643 (2019). ADS Google Scholar
Buizert, C. et al. Greenland temperature response to climate forcing during the last deglaciation. Science345, 1177–1180 (2014). ADS Google Scholar
Broecker, W. S. & Peng, T.-H. Comparison of 39Ar and 14C ages for waters in the deep ocean. Nucl. Instrum. Methods Phys. Res. B172, 473–478 (2000). ADS Google Scholar
Moore, A. K., Granger, D. E. & Conyers, G. Beryllium cycling through deciduous trees and implications for meteoric 10Be systematics. Chem. Geol.571, 120174 (2021). ADS Google Scholar
Phillips, F. M. et al. The CRONUS-Earth Project: a synthesis. Quat. Geochronol.31, 119–154 (2016). Google Scholar
Kurz, M. D. In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim. Cosmochim. Acta50, 2855–2862 (1986). ADS Google Scholar
Butler, R. Destructive sampling ethics. Nat. Geosci.8, 817–818 (2015). ADS Google Scholar
Mogk, D. W. & Bruckner, M. Z. Geoethics training in the Earth and environmental sciences. Nat. Rev. Earth Environ.1, 81–83 (2020). ADS Google Scholar
David-Chavez, D. M. & Gavin, M. C. A global assessment of Indigenous community engagement in climate research. Environ. Res. Lett.13, 123005 (2018). Google Scholar
Reano, D. Using Indigenous research frameworks in the multiple contexts of research, teaching, mentoring, and leading. Qual. Rep.25, 3902–3926 (2020). Google Scholar
Carroll, S. R. et al. The CARE principles for Indigenous Data Governance. Data Sci. J.19, 43 (2020). Google Scholar
Kohl, C. P. & Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim. Cosmochim. Acta56, 3583–3587 (1992). ADS Google Scholar
Mifsud, C., Fujioka, T. & Fink, D. Extraction and purification of quartz in rock using hot phosphoric acid for in situ cosmogenic exposure dating. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At.294, 203–207 (2013). ADS Google Scholar
Stone, J. A rapid fusion method for separation of beryllium-10 from soils and silicates. Geochem. Cosmochem. Acta62, 555–561 (1998). ADS Google Scholar
Schaefer, J. M. et al. High frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science324, 622 (2009). ADS Google Scholar
Synal, H.-A. Developments in accelerator mass spectrometry. Int. J. Mass. Spectrom.349, 192–202 (2013). Google Scholar
Wilcken, K. M. et al. SIRIUS performance: 10Be, 26Al and 36Cl measurements at ANSTO. Nucl. Instrum. Methods Phys. Res. B455, 300–304 (2019). ADS Google Scholar
Kober, F. et al. In situ cosmogenic 10Be and 21Ne in sanidine and in situ cosmogenic 3He in Fe–Ti-oxide minerals. Earth Planet. Sci. Lett.236, 404–418 (2005). ADS Google Scholar
Eaves, S. R. et al. Further constraint of the in situ cosmogenic Be-10 production rate in pyroxene and a viability test for late Quaternary exposure dating. Quat. Geochronol.48, 121–132 (2018). Google Scholar
Braucher, R., Blard, P. H., Benedetti, L. & Bourles, D. L. in In Situ-Produced Cosmogenic Nuclides and Quantification of Geological Processes Vol. 415 Geological Society of America Special Papers (eds AlonsoZarza, A. M. & Tanner, L. H.) 17–28 (Geological Society of America, 2006).
Stone, J. O., Allan, G. L., Fifield, L. K. & Cresswell, R. G. Cosmogenic chlorine-36 from calcium spallation. Geochim.Cosmochim. Acta60, 679–692 (1996). ADS Google Scholar
Schimmelpfennig, I. et al. Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38° N, Italy) and Payun-Matru (36° S, Argentina). Geochim. Cosmochim. Acta75, 2611–2632 (2011). ADS Google Scholar
Schimmelpfennig, I. et al. Cl-36 production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). J. Quat. Sci.29, 407–413 (2014). Google Scholar
Stone, J. O. H., Evans, J. M., Fifield, L. K., Allan, G. L. & Cresswell, R. G. Cosmogenic chlorine-36 production in calcite by muons. Geoch. Cosmochim. Acta62f, 433–454 (1997). ADS Google Scholar
Herber, L. J. Separation of feldspar from quartz by flotation. Am. Miner.54, 1212–1215 (1969). Google Scholar
Sulaymonova, V. A. et al. Feldspar flotation as a quartz-purification method in cosmogenic nuclide dating: a case study of fluvial sediments from the Pamir. MethodsX5, 717–726 (2018). Google Scholar
Bromley, G. R. M. et al. Pyroxene separation by HF leaching and its impact on helium surface-exposure dating. Quat. Geochronol.23, 1–8 (2014). Google Scholar
Bruno, L. A. et al. Dating of Sirius Group tillites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne. Earth Planet. Sci. Lett.147, 37–54 (1997). ADS Google Scholar
Balter-Kennedy, A., Bromley, G., Balco, G., Thomas, H. & Jackson, M. S. A 14.5-million-year record of East Antarctic Ice Sheet fluctuations from the central Transantarctic Mountains, constrained with cosmogenic He-3, Be-10, Ne-21, and Al-26. Cryosphere14, 2647–2672 (2020). ADS Google Scholar
Moore, A. K. & Granger, D. E. Watershed-averaged denudation rates from cosmogenic 36Cl in detrital magnetite. Earth Planet. Sci. Lett.527, 115761 (2019). Google Scholar
Moore, A. K. & Granger, D. E. Calibration of the production rate of cosmogenic 36Cl from Fe. Quat. Geochronol.51, 87–98 (2019). Google Scholar
Lifton, N. A., Jull, A. J. T. & Quade, J. A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz. Geochim. Cosmochim. Acta65, 1953–1969 (2001). ADS Google Scholar
Roman, H. Measurements of in-Situ Production of14C in SiO2Production Rates and Cross-Sections. PhD thesis, McMaster University (1989).
Jull, A. J. T., Wilson, A. E., Burr, G. S., Toolin, L. J. & Donahue, D. J. Measurements of cosmogenic C-14 produced by spallation in high-altitude rocks. Radiocarbon34, 737–744 (1992). Google Scholar
Fülöp, R.-H. et al. Update on the performance of the SUERC in situ cosmogenic C-14 extraction line. Radiocarbon52, 1288–1294 (2010). Google Scholar
Goehring, B. M., Schimmelpfennig, I. & Schaefer, J. M. Capabilities of the Lamont–Doherty Earth Observatory in situ C-14 extraction laboratory updated. Quat. Geochronol.19, 194–197 (2014). Google Scholar
Goehring, B. M., Wilson, J. & Nichols, K. A fully automated system for the extraction of in situ cosmogenic carbon-14 in the Tulane University cosmogenic nuclide laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.455, 284–292 (2019). ADS Google Scholar
Lifton, N., Goehring, B., Wilson, J., Kubley, T. & Caffee, M. Progress in automated extraction and purification of in situ C-14 from quartz: results from the Purdue in situ C-14 laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.361, 381–386 (2015). ADS Google Scholar
Fülöp, R.-H. et al. The ANSTO–University of Wollongong in-situ 14C extraction laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At.438, 207–213 (2019). ADS Google Scholar
Hippe, K. et al. An update on in situ cosmogenic C-14 analysis at ETH Zurich. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.294, 81–86 (2013). ADS Google Scholar
Sliz, M. U., Espic, C., Hofmann, B. A., Leya, I. & Szidat, S. An update on the performance of the in situ C-14 extraction line at the University of Bern. Radiocarbon62, 1371–1388 (2020). Google Scholar
Lupker, M. et al. In-situ cosmogenic C-14 analysis at ETH Zurich: characterization and performance of a new extraction system. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.457, 30–36 (2019). ADS Google Scholar
Lupker, M. et al. Depth-dependence of the production rate of in situ C-14 in quartz from the Leymon High core, Spain. Quat. Geochronol.28, 80–87 (2015). Google Scholar
Goehring, B. et al. The Rhone Glacier was smaller than today for most of the Holocene. Geology39, 679–682 (2011). ADS Google Scholar
Wirsig, C. et al. Combined cosmogenic Be-10, in situ C-14 and Cl-36 concentrations constrain Holocene history and erosion depth of Grueben glacier (CH). Swiss J. Geosci.109, 379–388 (2016). Google Scholar
Young, N. E. et al. In situ cosmogenic 10Be–14C–26Al measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size. Clim. Past.17, 419–450 (2021). Google Scholar
Fülöp, R.-H. et al. Million-year lag times in a post-orogenic sediment conveyor. Sci. Adv.6, eaaz8845 (2020). ADS Google Scholar
Hippe, K. et al. Cosmogenic in situ 14C–10Be reveals abrupt Late Holocene soil loss in the Andean Altiplano. Nat. Commun.12, 2546–2546 (2021). ADS Google Scholar
Zappala, J. C., McLain, D., Mueller, P. & Steeb, J. L. Enhanced detection limits for radiokrypton analysis. J. Radioanal. Nucl. Chem.326, 1075–1079 (2020). Google Scholar
Dong, X.-Z. et al. Dual separation of krypton and argon from environmental samples for radioisotope dating. Anal. Chem.91, 13576–13581 (2019). Google Scholar
Jull, A. J. T. & Burr, G. S. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 375–383 (Elsevier, 2014).
Bennett, C. L. et al. Radiocarbon dating using electrostatic accelerators — negative-ions provide key. Science198, 508–510 (1977). ADS Google Scholar
Muller, R. A. Radioisotope dating with a cyclotron. Science196, 489–494 (1977). ADS Google Scholar
Nelson, D. E., Korteling, R. G. & Stott, W. R. C-14 — direct detection at natural concentrations. Science198, 507–508 (1977). ADS Google Scholar
Raisbeck, G. M., Yiou, F., Fruneau, M. & Loiseaux, J. M. BE-10 mass-spectrometry with a cyclotron. Science202, 215–217 (1978). ADS Google Scholar
Turekian, K. K. et al. Measurement of BE-10 in manganese nodules using a tandem Van de Graaff accelerator. Geophys. Res. Lett.6, 417–420 (1979). ADS Google Scholar
Hidy, A. J. et al. A new Be-7 AMS capability established at CAMS and the potential for large datasets. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.414, 126–132 (2018). ADS Google Scholar
Rood, D. H., Brown, T. A., Finkel, R. C. & Guilderson, T. P. Poisson and non-Poisson uncertainty estimations of Be-10/Be-9 measurements at LLNL-CAMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.294, 426–429 (2013). ADS Google Scholar
Rood, D. H., Hall, S., Guilderson, T. P., Finkel, R. C. & Brown, T. A. Challenges and opportunities in high-precision Be-10 measurements at CAMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.268, 730–732 (2010). ADS Google Scholar
Fifield, L. K., Tims, S. G., Gladkis, L. G. & Morton, C. R. Al-26 measurements with Be-10 counting statistics. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.259, 178–183 (2007). ADS Google Scholar
Braumann, S. M. et al. Holocene glacier change in the Silvretta Massif (Austrian Alps) constrained by a new Be-10 chronology, historical records and modern observations. Quat. Sci. Rev.245, 106493 (2020). Google Scholar
Paul, M. Separation of isobars with a gas-filled magnet. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.52, 315–321 (1990). ADS Google Scholar
Granger, D. E. et al. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan. Nature522, 85–88 (2015). ADS Google Scholar
Argento, D. C., Stone, J. O., Fifield, L. K. & Tims, S. G. Chlorine-36 in seawater. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.268, 1226–1228 (2010). ADS Google Scholar
Ramsey, C. B., Higham, T. & Leach, P. Towards high-precision AMS: progress and limitations. Radiocarbon46, 17–24 (2004). Google Scholar
Yang, B., Smith, A. M. & Long, S. Second generation laser-heated microfurnace for the preparation of microgram-sized graphite samples. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At.361, 363–371 (2015). ADS Google Scholar
Melchert, J. O. et al. Exploring sample size limits of AMS gas ion source C-14 analysis at CologneAMS. Radiocarbon61, 1785–1793 (2019). Google Scholar
Wacker, L. et al. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.294, 315–319 (2013). ADS Google Scholar
Fujioka, T. et al. In situ cosmogenic 53Mn production rate from ancient low-denudation surface in tropic Brazil. Nucl. Instrum. Methods Phys. Res. B268, 1209–1213 (2010). ADS Google Scholar
Schaefer, J. M. et al. Terrestrial 53Mn — a new monitor of Earth surface processes. Earth Planet. Sci. Lett.251, 334–345 (2006). ADS Google Scholar
Aldrich, L. T. & Nier, A. O. Variation of He-3 He-4 abundance ratio in natural sources of helium. Phys. Rev.74, 1225–1225 (1948). Google Scholar
Reynolds, J. H. High sensitivity mass spectrometer for noble gas analysis. Rev. Sci. Instrum.27, 928–934 (1956). ADS Google Scholar
Niedermann, S. et al. Cosmic-ray-produced 21Ne in terrestrial quartz: the neon inventory of Sierra Nevada quartz separates. Earth Planet. Sci. Lett.125, 341–355 (1994). ADS Google Scholar
Niedermann, S., Graf, T. & Marti, K. Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Earth Planet. Sci. Lett.118, 65–73 (1993). ADS Google Scholar
Ritter, B., Vogt, A. & Dunai, T. J. Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis. Geochronol. Discuss.2021, 1–16 (2021). Google Scholar
Renne, P. R., Farley, K. A., Becker, T. A. & Sharp, W. D. Terrestrial cosmogenic argon. Earth Planet. Sci. Lett.188, 435–440 (2001). ADS Google Scholar
Niedermann, S., Schaefer, J. M., Wieler, R. & Naumann, R. The production rate of cosmogenic 38Ar from calcium in terrestrial pyroxene. Earth Planet. Sci. Lett.257, 596–608 (2007). ADS Google Scholar
Raab, E. L., Prentiss, M., Cable, A., Chu, S. & Pritchard, D. E. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett.59, 2631–2634 (1987). ADS Google Scholar
Granger, D. E., Lifton, N. A. & Willenbring, J. K. A cosmic trip: 25 years of cosmogenic nuclides in geology. Geol. Soc. Am. Bull.125, 1379–1402 (2013). ADS Google Scholar
Putnam, A. E. et al. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. Nat. Geosci.3, 700–704 (2010). ADS Google Scholar
Spector, P. et al. Rapid early-Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett.44, 7817–7825 (2017). ADS Google Scholar
Ullman, D. J. et al. Southern Laurentide ice-sheet retreat synchronous with rising boreal summer insolation. Geology43, 23–26 (2015). ADS Google Scholar
Kelly, M. A. et al. Expanded glaciers during a dry and cold Last Glacial Maximum in equatorial East Africa. Geology42, 519–522 (2014). ADS Google Scholar
Levy, L. B. et al. Coeval fluctuations of the Greenland Ice Sheet and a local glacier, central East Greenland, during late glacial and early Holocene time. Geophys. Res. Lett.43, 1623–1631 (2016). ADS Google Scholar
Schaefer, J. M. et al. The Southern Glacial Maximum 65,000 years ago and its unfinished termination. Quat. Sci. Rev.114, 52–60 (2015). ADS Google Scholar
Strand, P. D. et al. Millennial-scale pulsebeat of glaciation in the Southern Alps of New Zealand. Quat. Sci. Rev.220, 165–177 (2019). ADS Google Scholar
Young, N. E. et al. Deglaciation of the Greenland and Laurentide ice sheets interrupted by glacier advance during abrupt coolings. Quat. Sci. Rev.229, 106091 (2020). Google Scholar
Zhang, Q. et al. Quaternary glaciations in the Lopu Kangri area, central Gangdise Mountains, southern Tibetan Plateau. Quat. Sci. Rev.201, 470–482 (2018). ADS Google Scholar
Ivy-Ochs, S. et al. The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic Be-10, Al-26, Cl-36, and Ne-21. GSA Spec. Pap.415, 43–60 (2006). Google Scholar
Ivy-Ochs, S. et al. Chronology of the last glacial cycle in the European Alps. J. Quat. Sci.23, 559–573 (2008). Google Scholar
Larsen, N. K. et al. Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland. Sci. Rep.6, 22362 (2016). ADS Google Scholar
Larsen, N. K. et al. Strong altitudinal control on the response of local glaciers to Holocene climate change in southwest Greenland. Quat. Sci. Rev.168, 69–78 (2017). ADS Google Scholar
Levy, L. B. et al. Multi-phased deglaciation of south and southeast Greenland controlled by climate and topographic setting. Quat. Sci. Rev.242, 106454 (2020). Google Scholar
Claude, A. et al. The Chironico landslide (Valle Leventina, southern Swiss Alps): age and evolution. Swiss J. Geosci.107, 273–291 (2014). Google Scholar
Putnam, A. et al. In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. Quat. Geochronol.5, 392–409 (2010). Google Scholar
Briner, J. P., Young, N. E., Goehring, B. & Schaefer, J. M. Constraining Holocene 10Be production rates in Greenland. J. Quat. Sci.27, 2–6 (2012). Google Scholar
Fenton, C. R. et al. Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grotlandsura and Russenes rock avalanches at 69° N, Norway. Quat. Geochronol.6, 437–452 (2011). Google Scholar
Young, N. E., Schaefer, J. M., Briner, J. P. & Goehring, B. M. A Be-10 production-rate calibration for the Arctic. J. Quat. Sci.28, 515–526 (2013). Google Scholar
Borchers, B. et al. Geological calibration of spallation production rates in the CRONUS-Earth Project. Quat. Geochronol.31, 188–198 (2016). Google Scholar
Schimmelpfennig, I. et al. Calibration of the in situ cosmogenic 14C production rate in New Zealand’s Southern Alps. J. Quat. Sci.27, 671–674 (2012). Google Scholar
Young, N. E. et al. West Greenland and global in situ C-14 production-rate calibrations. J. Quat. Sci.29, 401–406 (2014). Google Scholar
Fenton, C. R., Niedermann, S., Dunai, T. & Binnie, S. A. The SPICE project: production rates of cosmogenic Ne-21, Be-10, and C-14 in quartz from the 72 ka SP basalt flow, Arizona, USA. Quat. Geochronol.54, 101019 (2019). Google Scholar
Lal, D., Malhotra, P. K. & Peters, B. On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J. Atmos. Terr. Phys.12, 306–328 (1958). ADS Google Scholar
Argento, D. C., Stone, J. O., Reedy, R. C. & O’Brien, K. Physics-based modeling of cosmogenic nuclides part I — radiation transport methods and new insights. Quat. Geochronol.26, 29–43 (2015). Google Scholar
Argento, D. C., Stone, J. O., Reedy, R. C. & O’Brien, K. Physics-based modeling of cosmogenic nuclides part II — key aspects of in-situ cosmogenic nuclide production. Quat. Geochronol.26, 44–55 (2015). Google Scholar
Lifton, N., Sato, T. & Dunai, T. J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett.386, 149–160 (2014). ADS Google Scholar
Masarik, J. & Reedy, R. C. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth Planet. Sci. Lett.136, 381–395 (1995). ADS Google Scholar
Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from Be-10 and Al-26 measurements. Quat. Geochronol.3, 174–195 (2008). Google Scholar
Marrero, S. M. et al. Cosmogenic nuclide systematics and the CRONUScalc program. Quat. Geochronol.31, 160–187 (2016). Google Scholar
Akçar, N. et al. The AD 1717 rock avalanche deposits in the upper Ferret Valley (Italy): a dating approach with cosmogenic 10Be. J. Quat. Sci.27, 383–392 (2012). Google Scholar
Kaplan, M. et al. Patagonian and southern South Atlantic view of Holocene climate. Quat. Sci. Rev.141, 112–125 (2016). ADS Google Scholar
Putnam, A. E. et al. Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene. Nat. Geosci.5, 627–630 (2012). ADS Google Scholar
Reynhout, S. et al. Holocene glacier fluctuations in Patagonia are modulated by summer insolation intensity and paced by Southern Annular Mode-like variability. Quat. Sci. Rev.220, 178–187 (2019). ADS Google Scholar
Schimmelpfennig, I. et al. Holocene glacier culminations in the Western Alps and their hemispheric relevance. Geology40, 891–894 (2012). ADS Google Scholar
Eaves, S. R. et al. Late-glacial and Holocene glacier fluctuations in North Island, New Zealand. Quat. Sci. Rev.223, 105914 (2019). Google Scholar
Schimmelpfennig, I. et al. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, CentralAlps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth Planet. Sci. Lett.393, 220–230 (2014). ADS Google Scholar
Halsted, C. T., Bierman, P. R. & Balco, G. Empirical evidence for latitude and altitude variation of the in situ cosmogenic 26Al/10Be production ratio. Geosciences11, 402 (2021). ADS Google Scholar
Balco, G. Chlorine-36∕beryllium-10 burial dating of alluvial fan sediments associated with the Mission Creek strand of the San Andreas Fault system, California, USA. Geochronology1, 1–16 (2019). ADS Google Scholar
Goehring, B. M., Muzikar, P. & Lifton, N. A. An in situ 14C–10Be Bayesian isochron approach for interpreting complex glacial histories. Quat. Geochronol.15, 61–66 (2013). Google Scholar
Brown, L., Pavich, M. J., Hickman, R. E., Klein, J. & Middleton, R. Erosion of the eastern-United-States observed with Be-10. Earth Surf. Process. Landf.13, 441–457 (1988). ADS Google Scholar
Codilean, A. T. et al. OCTOPUS: an open cosmogenic isotope and luminescence database. Earth Syst. Sci. Data10, 2123–2139 (2018). ADS Google Scholar
Kirchner, J. W. et al. Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales. Geology29, 591–594 (2001). ADS Google Scholar
Riebe, C. S., Kirchner, J. W., Granger, D. E. & Finkel, R. C. Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic Al-26 and Be-10 in alluvial sediment. Geology28, 803–806 (2000). ADS Google Scholar
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. The soil production function and landscape equilibrium. Nature388, 358–361 (1997). ADS Google Scholar
Schaller, M. & Ehlers, T. A. Limits to quantifying climate driven changes in denudation rates with cosmogenic radionuclides. Earth Planet. Sci. Lett.248, 153–167 (2006). ADS Google Scholar
Allen, P. A. From landscapes into geological history. Nature451, 274–276 (2008). ADS Google Scholar
Cyr, A. J. & Granger, D. E. Dynamic equilibrium among erosion, river incision, and coastal uplift in the northern and central Apennines, Italy. Geology36, 103–106 (2008). ADS Google Scholar
Grischott, R. et al. Millennial scale variability of denudation rates for the last 15 kyr inferred from the detrital Be-10 record of Lake Stappitz in the Hohe Tauern massif, Austrian Alps. Holocene27, 1914–1927 (2017). ADS Google Scholar
Madella, A., Delunel, R., Akcar, N., Schlunegger, F. & Christl, M. Be-10-inferred paleo-denudation rates imply that the mid-Miocene western central Andes eroded as slowly as today. Sci. Rep.8, 2299 (2018). ADS Google Scholar
Oskin, M. E. et al. Steady Be-10-derived paleoerosion rates across the Plio-Pleistocene climate transition, Fish Creek-Vallecito basin, California. J. Geophys. Res. Earth Surf.122, 1653–1677 (2017). ADS Google Scholar
Gerber, C. et al. Using Kr-81 and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochim. Cosmochim. Acta205, 187–210 (2017). ADS Google Scholar
Weber, N. et al. The circulation of the Dead Sea brine in the regional aquifer. Earth Planet. Sci. Lett.493, 242–261 (2018). ADS Google Scholar
Yechieli, Y. et al. Recent seawater intrusion into deep aquifer determined by the radioactive noble-gas isotopes Kr-81 and Ar-39. Earth Planet. Sci. Lett.507, 21–29 (2019). ADS Google Scholar
Ram, R. et al. Identifying recharge processes into a vast “fossil” aquifer based on dynamic groundwater Kr-81 age evolution. J. Hydrol.587, 124946 (2020). Google Scholar
Yokochi, R. et al. Radiokrypton unveils dual moisture sources of a deep desert aquifer. Proc. Natl Acad. Sci. USA116, 16222–16227 (2019). ADS Google Scholar
Zhang, J. et al. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems. Geophys. Res. Lett.48, e2020GL092337 (2021). ADS Google Scholar
Aggarwal, P. K. et al. Continental degassing of He-4 by surficial discharge of deep groundwater. Nat. Geosci.8, 35–39 (2015). ADS Google Scholar
Matsumoto, T. et al. Application of combined Kr-81 and He-4 chronometers to the dating of old groundwater in a tectonically active region of the North China Plain. Earth Planet. Sci. Lett.493, 208–217 (2018). ADS Google Scholar
Matsumoto, T. et al. Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating. Earth Planet. Sci. Lett.535, 116120 (2020). Google Scholar
Buizert, C. et al. Radiometric Kr-81 dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proc. Natl Acad. Sci. USA111, 6876–6881 (2014). ADS Google Scholar
Crotti, I. et al. An extension of the TALDICE ice core age scale reaching back to MIS 10.1. Quat. Sci. Rev.266, 107078 (2021). Google Scholar
Dixon, J. L. & Riebe, C. S. Tracing and pacing soil across slopes. Elements10, 363–368 (2014). Google Scholar
Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature504, 423–419 (2013). ADS Google Scholar
Hippe, K. Constraining processes of landscape change with combined in situ cosmogenic C-14–Be-10 analysis. Quat. Sci. Rev.173, 1–19 (2017). ADS Google Scholar
Mudd, S. M., Harel, M.-A., Hurst, M. D., Grieve, S. W. D. & Marrero, S. M. The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations. Earth Surf. Dyn.4, 655–674 (2016). ADS Google Scholar
Portenga, E. W. & Bierman, P. R. Understanding Earth’s eroding surface with 10Be. GSA Today21, 4–10 (2011). Google Scholar
Willenbring, J. K., Codilean, A. T. & McElroy, B. Earth is (mostly) flat: apportionment of the flux of continental sediment over millennial time scales. Geology41, 343–346 (2013). ADS Google Scholar
Harel, M. A., Mudd, S. M. & Attal, M. Global analysis of the stream power law parameters based on worldwide Be-10 denudation rates. Geomorphology268, 184–196 (2016). ADS Google Scholar
Ben-Israel, M., Matmon, A., Hidy, A. J., Avni, Y. & Balco, G. Early-to-mid Miocene erosion rates inferred from pre-Dead Sea rift Hazeva River fluvial chert pebbles using cosmogenic Ne-21. Earth Surf. Dyn.8, 289–301 (2020). ADS Google Scholar
Rosenkranz, R., Schildgen, T., Wittmann, H. & Spiegel, C. Coupling erosion and topographic development in the rainiest place on Earth: Reconstructing the Shillong Plateau uplift history with in-situ cosmogenic Be-10. Earth Planet. Sci. Lett.483, 39–51 (2018). ADS Google Scholar
Brocard, G. Y., Willenbring, J. K., Miller, T. E. & Scatena, F. N. Relict landscape resistance to dissection by upstream migrating knickpoints. J. Geophys. Res. Earth Surf.121, 1182–1203 (2016). ADS Google Scholar
Hewawasam, T., von Blanckenburg, F., Schaller, M. & Kubik, P. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology31, 597–600 (2003). ADS Google Scholar
Bekaddour, T. et al. Paleo erosion rates and climate shifts recorded by Quaternary cut-and-fill sequences in the Pisco Valley, central Peru. Earth Planet. Sci. Lett.390, 103–115 (2014). ADS Google Scholar
Fuller, T. K., Perg, L. A., Willenbring, J. K. & Lepper, K. Field evidence for climate-driven changes in sediment supply leading to strath terrace formation. Geology37, 467–470 (2009). ADS Google Scholar
Garcin, Y. et al. Short-lived increase in erosion during the African Humid Period: evidence from the northern Kenya Rift. Earth Planet. Sci. Lett.459, 58–69 (2017). ADS Google Scholar
Grischott, R. et al. Constant denudation rates in a high alpine catchment for the last 6 kyrs. Earth Surf. Process. Landf.42, 1065–1077 (2017). ADS Google Scholar
Marshall, J. A., Roering, J. J., Gavin, D. G. & Granger, D. E. Late Quaternary climatic controls on erosion rates and geomorphic processes in western Oregon, USA. Geol. Soc. Am. Bull.129, 715–731 (2017). ADS Google Scholar
Schaller, M. et al. A 30 000 yr record of erosion rates from cosmogenic Be-10 in Middle European river terraces. Earth Planet. Sci. Lett.204, 307–320 (2002). ADS Google Scholar
Haeuselmann, P., Granger, D. E., Jeannin, P. Y. & Lauritzen, S. E. Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology35, 143–146 (2007). ADS Google Scholar
Mason, C. C. & Romans, B. W. Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using Al-26 and Be-10: Panamint Valley, California. Earth Planet. Sci. Lett.492, 130–143 (2018). ADS Google Scholar
Pingel, H., Schildgen, T., Strecker, M. R. & Wittmann, H. Pliocene–Pleistocene orographic control on denudation in northwest Argentina. Geology47, 359–362 (2019). ADS Google Scholar
Balco, G. & Stone, J. O. H. Measuring middle Pleistocene erosion rates with cosmic-ray-produced nuclides in buried alluvial sediment, Fisher Valley, southeastern Utah. Earth Surf. Process. Landf.30, 1051–1067 (2005). ADS Google Scholar
Val, P., Hoke, G. D., Fosdick, J. C. & Wittmann, H. Reconciling tectonic shortening, sedimentation and spatial patterns of erosion from 10Be paleo-erosion rates in the Argentine Precordillera. Earth Planet. Sci. Lett.450, 173–185 (2016). ADS Google Scholar
Puchol, N. et al. Limited impact of Quaternary glaciations on denudation rates in Central Asia. Geol. Soc. Am. Bull.129, 479–499 (2017). ADS Google Scholar
Charreau, J. et al. Paleo-erosion rates in Central Asia since 9 Ma: a transient increase at the onset of Quaternary glaciations? Earth Planet. Sci. Lett.304, 85–92 (2011). ADS Google Scholar
Mariotti, A. et al. Nonlinear forcing of climate on mountain denudation during glaciations. Nat. Geosci.14, 16–22 (2021). ADS Google Scholar
Masson-Delmotte, V. et al. in Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty 32 (World Meteorological Organization, 2018).
Tedesco, M. & Fettweis, X. Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland Ice Sheet. Cryosphere14, 1209–1223 (2020). ADS Google Scholar
Sasgen, I. et al. Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ.1, 8 (2020). ADS Google Scholar
Briner, J. P. et al. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature586, 70–74 (2020). ADS Google Scholar
Larsen, N. K. et al. The response of the southern Greenland Ice Sheet to the Holocene thermal maximum. Geology43, 291–294 (2015). ADS Google Scholar
Beel, C. R., Lifton, N. A., Briner, J. P. & Goehring, B. M. Quaternary evolution and ice sheet history of contrasting landscapes in Uummannaq and Sukkertoppen, western Greenland. Quat. Sci. Rev.149, 248–258 (2016). ADS Google Scholar
Briner, J. P. et al. Holocene climate change in Arctic Canada and Greenland. Quat. Sci. Rev.147, 340–364 (2016). ADS Google Scholar
Kelly, M. A. et al. A 10Be chronology of lateglacial and Holocene mountain glaciation in the Scoresby Sund region, east Greenland: implications for seasonality during lateglacial time. Quat. Sci. Rev.27, 2273–2282 (2008). ADS Google Scholar
Bierman, P. R. et al. Preservation of a preglacial landscape under the center of the Greenland Ice Sheet. Science344, 402–405 (2014). ADS Google Scholar
Bierman, P. R., Shakun, J. D., Corbett, L. B., Zimmerman, S. R. & Rood, D. H. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature540, 256–260 (2016). ADS Google Scholar
Yau, A. M., Bender, M. L., Blunier, T. & Jouzel, J. Setting a chronology for the basal ice at Dye-3 and GRIP: implications for the long-term stability of the Greenland Ice Sheet. Earth Planet. Sci. Lett.451, 1–9 (2016). ADS Google Scholar
NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature493, 489–494 (2013). ADS Google Scholar
Schaefer, J. M. et al. Greenland was nearly ice-free for extended periods during the Pleistocene. Nature540, 252–255 (2016). ADS Google Scholar
Christ, A. J. et al. A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century. Proc. Natl Acad. Sci. USA118, e2021442118 (2021). Google Scholar
Voosen, P. Greenland rock cores to trace ice’s past melting. Science369, 19 (2020). ADS Google Scholar
Prush, V. B. & Oskin, M. E. A mechanistic erosion model for cosmogenic nuclide inheritance in single-clast exposure ages. Earth and Planet. Sci. Lett.535, 116066 (2020). Google Scholar
Balco, G., Purvance, M. D. & Rood, D. H. Exposure dating of precariously balanced rocks. Quat. Geochronol.6, 295–303 (2011). Google Scholar
Rood, A. H. et al. Earthquake hazard uncertainties improved using precariously balanced rocks. AGU Adv.1, e2020AV000182 (2020). ADS Google Scholar
Soldati, M., Barrows, T. T., Prampolini, M. & Fifield, K. L. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea). J. Coast. Conserv.22, 831–844 (2018). Google Scholar
Hurst, M. D., Rood, D. H., Ellis, M. A., Anderson, R. S. & Dornbusch, U. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain. Proc. Natl Acad. Sci. USA113, 13336–13341 (2016). ADS Google Scholar
Ramalho, R. S. et al. Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci. Adv.1, e1500456 (2015). ADS Google Scholar
Tremblay, M. M., Shuster, D. L., Balco, G. & Cassata, W. S. Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars. Geochim. Cosmochim. Acta205, 14–30 (2017). ADS Google Scholar
Zeitler, P. K. & Tremblay, M. M. Measuring noble gases for thermochronology. Elements16, 343–345 (2020). Google Scholar
Tremblay, M. M. & Cassata, W. S. Noble gas thermochronology of extraterrestrial materials. Elements16, 331–336 (2020). Google Scholar
Clarke, R. J., Partridge, T. C., Granger, D. E. & Caffe, M. W. Dating the Sterkfontein fossils. Science301, 596–597 (2003). Google Scholar
Stuart, F. M. & Dunai, T. J. Editorial. Quat. Geochronol.4, 435–436 (2009). Google Scholar
Binnie, S. A. et al. Preliminary results of CoQtz-N: a quartz reference material for terrestrial in situ cosmogenic Be-10 and Al-26 measurements. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.456, 203–212 (2019). ADS Google Scholar
Jull, A. J. T., Scott, E. M. & Bierman, P. The CRONUS-Earth inter-comparison for cosmogenic isotope analysis. Quat. Geochronol.26, 3–10 (2015). Google Scholar
Vermeesch, P. et al. Interlaboratory comparison of cosmogenic 21Ne in quartz. Quat. Geochronol.26, 20–28 (2015). Google Scholar
Corbett, L. B., Bierman, P. R., Woodruff, T. E. & Caffee, M. W. A homogeneous liquid reference material for monitoring the quality and reproducibility of in situ cosmogenic 10Be and 26Al analyses. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At.456, 180–185 (2019). ADS Google Scholar
Dunai, T. J. & Stuart, F. M. Reporting of cosmogenic nuclide data for exposure age and erosion rate determinations. Quat. Geochronol.4, 437–440 (2009). Google Scholar
Frankel, K. L., Finkel, R. C. & Owen, L. A. Terrestrial cosmogenic nuclide geochronology data reporting standards needed. EOS Trans. AGU91, 31–32 (2010). ADS Google Scholar
Wilkinson, M. D. et al. Comment: the FAIR Guiding Principles for scientific data management and stewardship. Sci. Data3, 160018 (2016). Google Scholar
Heyman, J. Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates. Quat. Sci. Rev.91, 30–41 (2014). ADS Google Scholar
Blanckenburg, F. V., Belshaw, N. S. & O’Nions, R. K. Separation of Be-9 and cosmogenic Be-10 from environmental materials and SIMS isotope dilution analysis. Chem. Geol.129, 93–99 (1996). ADS Google Scholar
Binnie, S. A. et al. Separation of Be and Al for AMS using single-step column chromatography. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.361, 397–401 (2015). ADS Google Scholar
Corbett, L. B., Bierman, P. R. & Rood, D. H. An approach for optimizing in situ cosmogenic Be-10 sample preparation. Quat. Geochronol.33, 24–34 (2016). Google Scholar
Keddadouche, K. et al. Design and performance of an automated chemical extraction bench for the preparation of Be-10 and Al-26 targets to be analyzed by accelerator mass spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.456, 230–235 (2019). ADS Google Scholar
Enge, T. G. et al. An automated chromatography procedure optimized for analysis of stable Cu isotopes from biological materials. J. Anal. At. Spectrom.31, 2023–2030 (2016). Google Scholar
Retzmann, A., Zimmermann, T., Pröfrock, D., Prohaska, T. & Irrgeher, J. A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA Resin for the isotopic analysis of marine sediments. Anal. Bioanal. Chem.409, 5463–5480 (2017). Google Scholar
Wefing, A.-M. et al. High precision U-series dating of scleractinian cold-water corals using an automated chromatographic U and Th extraction. Chem. Geol.475, 140–148 (2017). ADS Google Scholar
Romaniello, S. J. et al. Fully automated chromatographic purification of Sr and Ca for isotopic analysis. J. Anal. At. Spectrom.30, 1906–1912 (2015). Google Scholar
Lamp, J. L. et al. Update on the cosmogenic in situ 14C laboratory at the Lamont–Doherty Earth Observatory. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.456, 157–162 (2019). ADS Google Scholar
Altenkirch, R. et al. Operating the 120° Dipol-Magnet at the CologneAMS in a gas-filled mode. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.438, 184–188 (2019). ADS Google Scholar
Vockenhuber, C., Miltenberger, K.-U. & Synal, H.-A. 36Cl measurements with a gas-filled magnet at 6 MV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.455, 190–194 (2019). ADS Google Scholar
Codilean, A. T. et al. Single-grain cosmogenic Ne-21 concentrations in fluvial sediments reveal spatially variable erosion rates. Geology36, 159–162 (2008). ADS Google Scholar
McPhillips, D., Bierman, P. R. & Rood, D. H. Millennial-scale record of landslides in the Andes consistent with earthquake trigger. Nat. Geosci.7, 925–930 (2014). ADS Google Scholar
Carretier, S., Regard, V., Leanni, L. & Farias, M. Long-term dispersion of river gravel in a canyon in the Atacama Desert, Central Andes, deduced from their Be-10 concentrations. Sci. Rep.9, 17763 (2019). ADS Google Scholar
Muzikar, P. Episodic erosion with a power law probability density, and the accumulation of cosmogenic nuclides. J. Geophys. Res. Earth Surf.124, 2345–2355 (2019). ADS Google Scholar
Skov, D. S., Egholm, D. L., Jansen, J. D., Sandiford, M. & Knudsen, M. F. Detecting landscape transience with in situ cosmogenic C-14 and Be-10. Quat. Geochronol.54, 101008 (2019). Google Scholar
Charreau, J. et al. Basinga: a cell-by-cell GIS toolbox for computing basin average scaling factors, cosmogenic production rates and denudation rates. Earth Surf. Process. Landf.44, 2349–2365 (2019). ADS Google Scholar
Dannhaus, N., Wittmann, H., Kram, P., Christl, M. & von Blanckenburg, F. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric Be-10/Be-9 ratios. Geochim. Cosmochim. Acta222, 618–641 (2018). ADS Google Scholar
Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic meridional overturning circulation weakest in last millennium. Nat. Geosci.14, 118–120 (2021). ADS Google Scholar
Chafik, L., Nilsen, J. E. Ø., Dangendorf, S., Reverdin, G. & Frederikse, T. North Atlantic Ocean circulation and decadal sea level change during the altimetry era. Sci. Rep.9, 1041 (2019). ADS Google Scholar
Carter, B. R. et al. Pacific anthropogenic carbon between 1991 and 2017. Glob. Biogeochem. Cycles33, 597–617 (2019). Google Scholar
Ebser, S. et al. Ar-39 dating with small samples provides new key constraints on ocean ventilation. Nat. Commun.9, 5046 (2018). ADS Google Scholar
Wang, J. S. et al. Optical excitation and trapping of Kr-81. Phys. Rev. Lett.127, 023201 (2021). ADS Google Scholar
Yusoff, K. A Billion Black Anthropocenes or None (Univ. Minnesota Press, 2018).
Bacon-Bercey, J. Statistics on Black meteorologists in six organizational units of the Federal Government. Bull. Am. Meteorol. Soc.59, 576–580 (1978). ADS Google Scholar
Morris, V. R. Combating racism in the geosciences: reflections from a black professor. AGU Adv.2, e2020AV000358 (2021). ADS Google Scholar
Ali, H. N. et al. An actionable anti-racism plan for geoscience organizations. Nat. Commun.12, 3794 (2021). ADS Google Scholar
Hofstra, B. et al. The diversity–innovation paradox in science. Proc. Natl Acad. Sci. USA117, 9284 (2020). Google Scholar
Garcia, A. A., Semken, S. & Brandt, E. The construction of cultural consensus models to characterize ethnogeological knowledge. Geoheritage12, 59 (2020). Google Scholar
Handley, H. K. et al. In Australasia, gender is still on the agenda in geosciences. Adv. Geosci.53, 205–226 (2020). Google Scholar
Piccoli, F. & Guidobaldi, G. A report on gender diversity and equality in the geosciences: an analysis of the Swiss Geoscience Meetings from 2003 to 2019. Swiss J. Geosci.114, 1 (2021). Google Scholar
Stone, J. O. Air pressure and cosmogenic isotope production. J. Geophys. Res.105, 23753–23759 (2000). ADS Google Scholar
Heisinger, B. et al. Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth Planet. Sci. Lett.200, 357–369 (2002). ADS Google Scholar
Heisinger, B. et al. Production of selected cosmogenic radionuclides by muons; 1. Fast muons. Earth Planet. Sci. Lett.200, 345–355 (2002). ADS Google Scholar
Dunai, T. J. & Lifton, N. A. The nuts and bolts of cosmogenic nuclide production. Elements10, 347–350 (2014). Google Scholar
Dunai, J. T. Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences (Cambridge Univ. Press, 2010).
Bourles, D., Raisbeck, G. M. & Yiou, F. 10Be and 9Be in marine sediments and their potential for dating. Geochim. Cosmochim. Acta53, 443–452 (1989). ADS Google Scholar
Pastuovic, Z. et al. SIRIUS — a new 6 MV accelerator system for IBA and AMS at ANSTO. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.371, 142–147 (2016). ADS Google Scholar
Synal, H.-A., Stocker, M. & Suter, M. MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.259, 7–13 (2007). ADS Google Scholar
Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science286, 1139–1141 (1999). Google Scholar
von Blanckenburg, F. & Willenbring, J. Cosmogenic nuclides: dates and rates of earth-surface change. Elements10, 341–346 (2014). Google Scholar
Granger, D. E. & Schaller, M. Cosmogenic nuclides and erosion at the watershed scale. Elements10, 369–373 (2014). Google Scholar
Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science349, 153 (2015). Google Scholar
Melles, M. et al. 2.8 Million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science337, 315–320 (2012). ADS Google Scholar
Funder, S. et al. A 10,000-year record of Arctic Ocean sea-ice variability — view from the beach. Science333, 747–750 (2011). ADS Google Scholar
Fülöp, R. H., Wacker, L. & Dunai, T. J. Progress report on a novel in situ 14C extraction scheme at the University of Cologne. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.361, 20–24 (2015). ADS Google Scholar
Blard, P. H. et al. An inter-laboratory comparison of cosmogenic 3He and radiogenic 4He in the CRONUS-P pyroxene standard. Quat. Geochronol.26, 11–19 (2015). Google Scholar
Mechernich, S. et al. Carbonate and silicate intercomparison materials for cosmogenic Cl-36 measurements. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At.455, 250–259 (2019). ADS Google Scholar
Fraser, B. News in Focus: Daring scientists extract ice from Earth’s highest tropical glacier. Nature573, 171–172 (2019). ADS Google Scholar
North, M. A., Hastie, W. W. & Hoyer, L. Out of Africa: The underrepresentation of African authors in high-impact geoscience literature. Earth Sci. Rev.208, 103262 (2020). Google Scholar
Fiser, R., Lozier, S., Graumlich, L. & White, L. AGU releases 2020 annual DEI report and new DEI dashboard (American Geophysical Union, 2021).
Crenshaw, K. Demarginalizing the intersection of race and sex: a black feminist critique of antidiscrimination doctrine, feminist theory, and antiracist politics. Univ. Chic. Leg. Forum1, 139–167 (1989). Google Scholar
Núñez, A.-M., Rivera, J. & Hallmark, T. Applying an intersectionality lens to expand equity in the geosciences. J. Geosci. Educ.68, 97–114 (2020). ADS Google Scholar