Cosmogenic nuclide techniques (original) (raw)

References

  1. Davis, R. J. & Schaeffer, O. A. Chlorine-36 in nature. Ann. N.Y. Acad. Aci. 62, 105–122 (1955).
    ADS Google Scholar
  2. Suter, M. et al. Precision-measurements of C-14 in AMS — some results and prospects. Nucl Instrum Methods Phys Res B 5, 117–122 (1984).
    ADS Google Scholar
  3. Graf, T., Kohl, C. P., Marti, K. & Nishiizumi, K. Cosmic-ray produced neon in antarctic rocks. Geophys. Res. Lett. 18, 203–206 (1991).
    ADS Google Scholar
  4. Kurz, M. D. Cosmogenic helium in a terrestrial igneous rock. Nature 320, 435–439 (1986).
    ADS Google Scholar
  5. Lal, D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 104, 424–439 (1991).
    ADS Google Scholar
  6. Nishiizumi, K., Lal, D., Klein, R., Middleton, R. & Arnold, J. R. Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates. Nature 319, 134–136 (1986).
    ADS Google Scholar
  7. Phillips, F. M., Leavy, B. D., Jannik, N. O., Elmore, D. & Kubik, P. W. The accumulation pf cosmogenic Cl-36 in rocks — a method for surface exposure dating. Science 231, 41–43 (1986).
    ADS Google Scholar
  8. Balco, G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quat. Sci. Rev. 30, 3–27 (2011).
    ADS Google Scholar
  9. Balco, G. Glacier change and paleoclimate applications of cosmogenic-nuclide exposure dating. Annu. Rev. Earth Planet. Sci. 48, 21–48 (2020).
    ADS Google Scholar
  10. Cerling, T. E. & Craig, H. Geomorphology and in-situ cosmogenic isotopes. Annu. Rev. Earth Planet. Sci. 22, 273–317 (1994).
    ADS Google Scholar
  11. Gosse, J. C. & Phillips, F. M. Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev. 20, 1475–1560 (2001).
    ADS Google Scholar
  12. Kurz, M. D. & Brook, E. J. in Dating in Exposed and Surface Contexts (ed. Beck, C.) 139–159 (Univ. New Mexico Press, 1994).
  13. Blard, P. H., Bourles, D., Lave, J. & Pik, R. Applications of ancient cosmic-ray exposures: theory, techniques and limitations. Quat. Geochronol. 1, 59–73 (2006).
    Google Scholar
  14. Brown, L., Klein, J., Middleton, R., Sacks, I. S. & Tera, F. BE-10 in island-arc volcanos and implications for subduction. Nature 299, 718–720 (1982).
    ADS Google Scholar
  15. Ivy-Ochs, S., Schlüchter, C., Prentice, M., Kubik, P. W. & Beer, J. 10Be and 26Al exposure ages for the Sirius Group at Mt. Fleming, Mt. Feather and the plateau surface at Table Mt. The Antarctic Region: Geological Evolution and Processes https://www.dora.lib4ri.ch/eawag/islandora/object/eawag:4487 (1997).
  16. Balco, G. Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating. Geochronology 2, 169–175 (2020).
    ADS Google Scholar
  17. Putnam, A. E., Bromley, G. R. M., Rademaker, K. & Schaefer, J. M. In situ Be-10 production-rate calibration from a C-14-dated late-glacial moraine belt in Rannoch Moor, central Scottish Highlands. Quat. Geochronol. 50, 109–125 (2019).
    Google Scholar
  18. Granger, D. E. & Muzikar, P. F. Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth Planet. Sci. Lett. 188, 269–281 (2001).
    ADS Google Scholar
  19. Corbett, L. B. et al. Cosmogenic Al-26/Be-10 surface production ratio in Greenland. Geophys. Res. Lett. 44, 1350–1359 (2017).
    ADS Google Scholar
  20. Balco, G. & Shuster, D. L. Al-26–Be-10–Ne-21 burial dating. Earth Planet. Sci. Lett. 286, 570–575 (2009).
    ADS Google Scholar
  21. Granger, D. E. A review of burial dating methods using Al-26 and Be-10. Geol. Soc. Am. https://doi.org/10.1130/2006.2415(01) (2006).
    Article Google Scholar
  22. Nishiizumi, K. Preparation of Al-26 AMS standards. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 223, 388–392 (2004).
    ADS Google Scholar
  23. Chmeleff, J., von Blanckenburg, F., Kossert, K. & Jakob, D. Determination of the Be-10 half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 192–199 (2010).
    ADS Google Scholar
  24. Korschinek, G. et al. A new value for the half-life of Be-10 by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 187–191 (2010).
    ADS Google Scholar
  25. von Blanckenburg, F. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462–479 (2005).
    ADS Google Scholar
  26. Willenbring, J. K. & von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211–214 (2010).
    ADS Google Scholar
  27. Willenbring, J. K. & von Blanckenburg, F. Meteoric cosmogenic beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics. Earth Sci. Rev. 98, 105–122 (2010).
    ADS Google Scholar
  28. Wittmann, H., Malusa, M. G., Resentini, A., Garzanti, E. & Niedermann, S. The cosmogenic record of mountain erosion transmitted across a foreland basin: source-to-sink analysis of in situ Be-10, Al-26 and Ne-21 in sediment of the Po river catchment. Earth Planet. Sci. Lett. 452, 258–271 (2016).
    ADS Google Scholar
  29. Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J. L. & Kubik, P. W. Recycling of Amazon floodplain sediment quantified by cosmogenic Al-26 and Be-10. Geology 39, 467–470 (2011).
    ADS Google Scholar
  30. Beer, J. et al. Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 331, 675–679 (1988).
    ADS MathSciNet Google Scholar
  31. Loosli, H. H. & Oeschger, H. 37Ar and 81Kr in the atmosphere. Earth Planet. Sci. Lett. 7, 67–78 (1969).
    ADS Google Scholar
  32. Loosli, H. H. A dating method with Ar-39. Earth Planet. Sci. Lett. 63, 51–62 (1983).
    ADS Google Scholar
  33. Lu, Z. T. et al. Tracer applications of noble gas radionuclides in the geosciences. Earth Sci. Rev. 138, 196–214 (2014).
    ADS Google Scholar
  34. Tian, L. et al. Kr-81 dating at the guliya ice cap, Tibetan Plateau. Geophys. Res. Lett. 46, 6636–6643 (2019).
    ADS Google Scholar
  35. Buizert, C. et al. Greenland temperature response to climate forcing during the last deglaciation. Science 345, 1177–1180 (2014).
    ADS Google Scholar
  36. Broecker, W. S. & Peng, T.-H. Comparison of 39Ar and 14C ages for waters in the deep ocean. Nucl. Instrum. Methods Phys. Res. B 172, 473–478 (2000).
    ADS Google Scholar
  37. Moore, A. K., Granger, D. E. & Conyers, G. Beryllium cycling through deciduous trees and implications for meteoric 10Be systematics. Chem. Geol. 571, 120174 (2021).
    ADS Google Scholar
  38. Phillips, F. M. et al. The CRONUS-Earth Project: a synthesis. Quat. Geochronol. 31, 119–154 (2016).
    Google Scholar
  39. Kurz, M. D. In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim. Cosmochim. Acta 50, 2855–2862 (1986).
    ADS Google Scholar
  40. Butler, R. Destructive sampling ethics. Nat. Geosci. 8, 817–818 (2015).
    ADS Google Scholar
  41. Mogk, D. W. & Bruckner, M. Z. Geoethics training in the Earth and environmental sciences. Nat. Rev. Earth Environ. 1, 81–83 (2020).
    ADS Google Scholar
  42. David-Chavez, D. M. & Gavin, M. C. A global assessment of Indigenous community engagement in climate research. Environ. Res. Lett. 13, 123005 (2018).
    Google Scholar
  43. Reano, D. Using Indigenous research frameworks in the multiple contexts of research, teaching, mentoring, and leading. Qual. Rep. 25, 3902–3926 (2020).
    Google Scholar
  44. Carroll, S. R. et al. The CARE principles for Indigenous Data Governance. Data Sci. J. 19, 43 (2020).
    Google Scholar
  45. Kohl, C. P. & Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim. Cosmochim. Acta 56, 3583–3587 (1992).
    ADS Google Scholar
  46. Mifsud, C., Fujioka, T. & Fink, D. Extraction and purification of quartz in rock using hot phosphoric acid for in situ cosmogenic exposure dating. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 294, 203–207 (2013).
    ADS Google Scholar
  47. Stone, J. A rapid fusion method for separation of beryllium-10 from soils and silicates. Geochem. Cosmochem. Acta 62, 555–561 (1998).
    ADS Google Scholar
  48. Schaefer, J. M. et al. High frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324, 622 (2009).
    ADS Google Scholar
  49. Synal, H.-A. Developments in accelerator mass spectrometry. Int. J. Mass. Spectrom. 349, 192–202 (2013).
    Google Scholar
  50. Wilcken, K. M. et al. SIRIUS performance: 10Be, 26Al and 36Cl measurements at ANSTO. Nucl. Instrum. Methods Phys. Res. B 455, 300–304 (2019).
    ADS Google Scholar
  51. Kober, F. et al. In situ cosmogenic 10Be and 21Ne in sanidine and in situ cosmogenic 3He in Fe–Ti-oxide minerals. Earth Planet. Sci. Lett. 236, 404–418 (2005).
    ADS Google Scholar
  52. Eaves, S. R. et al. Further constraint of the in situ cosmogenic Be-10 production rate in pyroxene and a viability test for late Quaternary exposure dating. Quat. Geochronol. 48, 121–132 (2018).
    Google Scholar
  53. Braucher, R., Blard, P. H., Benedetti, L. & Bourles, D. L. in In Situ-Produced Cosmogenic Nuclides and Quantification of Geological Processes Vol. 415 Geological Society of America Special Papers (eds AlonsoZarza, A. M. & Tanner, L. H.) 17–28 (Geological Society of America, 2006).
  54. Stone, J. O., Allan, G. L., Fifield, L. K. & Cresswell, R. G. Cosmogenic chlorine-36 from calcium spallation. Geochim.Cosmochim. Acta 60, 679–692 (1996).
    ADS Google Scholar
  55. Schimmelpfennig, I. et al. Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38° N, Italy) and Payun-Matru (36° S, Argentina). Geochim. Cosmochim. Acta 75, 2611–2632 (2011).
    ADS Google Scholar
  56. Schimmelpfennig, I. et al. Cl-36 production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). J. Quat. Sci. 29, 407–413 (2014).
    Google Scholar
  57. Stone, J. O. H., Evans, J. M., Fifield, L. K., Allan, G. L. & Cresswell, R. G. Cosmogenic chlorine-36 production in calcite by muons. Geoch. Cosmochim. Acta 62f, 433–454 (1997).
    ADS Google Scholar
  58. Herber, L. J. Separation of feldspar from quartz by flotation. Am. Miner. 54, 1212–1215 (1969).
    Google Scholar
  59. Sulaymonova, V. A. et al. Feldspar flotation as a quartz-purification method in cosmogenic nuclide dating: a case study of fluvial sediments from the Pamir. MethodsX 5, 717–726 (2018).
    Google Scholar
  60. Bromley, G. R. M. et al. Pyroxene separation by HF leaching and its impact on helium surface-exposure dating. Quat. Geochronol. 23, 1–8 (2014).
    Google Scholar
  61. Bruno, L. A. et al. Dating of Sirius Group tillites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne. Earth Planet. Sci. Lett. 147, 37–54 (1997).
    ADS Google Scholar
  62. Balter-Kennedy, A., Bromley, G., Balco, G., Thomas, H. & Jackson, M. S. A 14.5-million-year record of East Antarctic Ice Sheet fluctuations from the central Transantarctic Mountains, constrained with cosmogenic He-3, Be-10, Ne-21, and Al-26. Cryosphere 14, 2647–2672 (2020).
    ADS Google Scholar
  63. Moore, A. K. & Granger, D. E. Watershed-averaged denudation rates from cosmogenic 36Cl in detrital magnetite. Earth Planet. Sci. Lett. 527, 115761 (2019).
    Google Scholar
  64. Moore, A. K. & Granger, D. E. Calibration of the production rate of cosmogenic 36Cl from Fe. Quat. Geochronol. 51, 87–98 (2019).
    Google Scholar
  65. Lifton, N. A., Jull, A. J. T. & Quade, J. A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz. Geochim. Cosmochim. Acta 65, 1953–1969 (2001).
    ADS Google Scholar
  66. Roman, H. Measurements of in-Situ Production of 14 C in SiO 2 Production Rates and Cross-Sections. PhD thesis, McMaster University (1989).
  67. Jull, A. J. T., Wilson, A. E., Burr, G. S., Toolin, L. J. & Donahue, D. J. Measurements of cosmogenic C-14 produced by spallation in high-altitude rocks. Radiocarbon 34, 737–744 (1992).
    Google Scholar
  68. Fülöp, R.-H. et al. Update on the performance of the SUERC in situ cosmogenic C-14 extraction line. Radiocarbon 52, 1288–1294 (2010).
    Google Scholar
  69. Goehring, B. M., Schimmelpfennig, I. & Schaefer, J. M. Capabilities of the Lamont–Doherty Earth Observatory in situ C-14 extraction laboratory updated. Quat. Geochronol. 19, 194–197 (2014).
    Google Scholar
  70. Goehring, B. M., Wilson, J. & Nichols, K. A fully automated system for the extraction of in situ cosmogenic carbon-14 in the Tulane University cosmogenic nuclide laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 455, 284–292 (2019).
    ADS Google Scholar
  71. Lifton, N., Goehring, B., Wilson, J., Kubley, T. & Caffee, M. Progress in automated extraction and purification of in situ C-14 from quartz: results from the Purdue in situ C-14 laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 361, 381–386 (2015).
    ADS Google Scholar
  72. Fülöp, R.-H. et al. The ANSTO–University of Wollongong in-situ 14C extraction laboratory. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 438, 207–213 (2019).
    ADS Google Scholar
  73. Hippe, K. et al. An update on in situ cosmogenic C-14 analysis at ETH Zurich. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 294, 81–86 (2013).
    ADS Google Scholar
  74. Sliz, M. U., Espic, C., Hofmann, B. A., Leya, I. & Szidat, S. An update on the performance of the in situ C-14 extraction line at the University of Bern. Radiocarbon 62, 1371–1388 (2020).
    Google Scholar
  75. Lupker, M. et al. In-situ cosmogenic C-14 analysis at ETH Zurich: characterization and performance of a new extraction system. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 457, 30–36 (2019).
    ADS Google Scholar
  76. Lupker, M. et al. Depth-dependence of the production rate of in situ C-14 in quartz from the Leymon High core, Spain. Quat. Geochronol. 28, 80–87 (2015).
    Google Scholar
  77. Goehring, B. et al. The Rhone Glacier was smaller than today for most of the Holocene. Geology 39, 679–682 (2011).
    ADS Google Scholar
  78. Wirsig, C. et al. Combined cosmogenic Be-10, in situ C-14 and Cl-36 concentrations constrain Holocene history and erosion depth of Grueben glacier (CH). Swiss J. Geosci. 109, 379–388 (2016).
    Google Scholar
  79. Young, N. E. et al. In situ cosmogenic 10Be–14C–26Al measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size. Clim. Past. 17, 419–450 (2021).
    Google Scholar
  80. Fülöp, R.-H. et al. Million-year lag times in a post-orogenic sediment conveyor. Sci. Adv. 6, eaaz8845 (2020).
    ADS Google Scholar
  81. Hippe, K. et al. Cosmogenic in situ 14C–10Be reveals abrupt Late Holocene soil loss in the Andean Altiplano. Nat. Commun. 12, 2546–2546 (2021).
    ADS Google Scholar
  82. Zappala, J. C., McLain, D., Mueller, P. & Steeb, J. L. Enhanced detection limits for radiokrypton analysis. J. Radioanal. Nucl. Chem. 326, 1075–1079 (2020).
    Google Scholar
  83. Dong, X.-Z. et al. Dual separation of krypton and argon from environmental samples for radioisotope dating. Anal. Chem. 91, 13576–13581 (2019).
    Google Scholar
  84. Jull, A. J. T. & Burr, G. S. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 375–383 (Elsevier, 2014).
  85. Bennett, C. L. et al. Radiocarbon dating using electrostatic accelerators — negative-ions provide key. Science 198, 508–510 (1977).
    ADS Google Scholar
  86. Muller, R. A. Radioisotope dating with a cyclotron. Science 196, 489–494 (1977).
    ADS Google Scholar
  87. Nelson, D. E., Korteling, R. G. & Stott, W. R. C-14 — direct detection at natural concentrations. Science 198, 507–508 (1977).
    ADS Google Scholar
  88. Raisbeck, G. M., Yiou, F., Fruneau, M. & Loiseaux, J. M. BE-10 mass-spectrometry with a cyclotron. Science 202, 215–217 (1978).
    ADS Google Scholar
  89. Turekian, K. K. et al. Measurement of BE-10 in manganese nodules using a tandem Van de Graaff accelerator. Geophys. Res. Lett. 6, 417–420 (1979).
    ADS Google Scholar
  90. Hidy, A. J. et al. A new Be-7 AMS capability established at CAMS and the potential for large datasets. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 414, 126–132 (2018).
    ADS Google Scholar
  91. Rood, D. H., Brown, T. A., Finkel, R. C. & Guilderson, T. P. Poisson and non-Poisson uncertainty estimations of Be-10/Be-9 measurements at LLNL-CAMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 294, 426–429 (2013).
    ADS Google Scholar
  92. Rood, D. H., Hall, S., Guilderson, T. P., Finkel, R. C. & Brown, T. A. Challenges and opportunities in high-precision Be-10 measurements at CAMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 730–732 (2010).
    ADS Google Scholar
  93. Fifield, L. K., Tims, S. G., Gladkis, L. G. & Morton, C. R. Al-26 measurements with Be-10 counting statistics. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 259, 178–183 (2007).
    ADS Google Scholar
  94. Braumann, S. M. et al. Holocene glacier change in the Silvretta Massif (Austrian Alps) constrained by a new Be-10 chronology, historical records and modern observations. Quat. Sci. Rev. 245, 106493 (2020).
    Google Scholar
  95. Paul, M. Separation of isobars with a gas-filled magnet. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 52, 315–321 (1990).
    ADS Google Scholar
  96. Granger, D. E. et al. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan. Nature 522, 85–88 (2015).
    ADS Google Scholar
  97. Argento, D. C., Stone, J. O., Fifield, L. K. & Tims, S. G. Chlorine-36 in seawater. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 268, 1226–1228 (2010).
    ADS Google Scholar
  98. Ramsey, C. B., Higham, T. & Leach, P. Towards high-precision AMS: progress and limitations. Radiocarbon 46, 17–24 (2004).
    Google Scholar
  99. Yang, B., Smith, A. M. & Long, S. Second generation laser-heated microfurnace for the preparation of microgram-sized graphite samples. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 361, 363–371 (2015).
    ADS Google Scholar
  100. Melchert, J. O. et al. Exploring sample size limits of AMS gas ion source C-14 analysis at CologneAMS. Radiocarbon 61, 1785–1793 (2019).
    Google Scholar
  101. Wacker, L. et al. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 294, 315–319 (2013).
    ADS Google Scholar
  102. Fujioka, T. et al. In situ cosmogenic 53Mn production rate from ancient low-denudation surface in tropic Brazil. Nucl. Instrum. Methods Phys. Res. B 268, 1209–1213 (2010).
    ADS Google Scholar
  103. Schaefer, J. M. et al. Terrestrial 53Mn — a new monitor of Earth surface processes. Earth Planet. Sci. Lett. 251, 334–345 (2006).
    ADS Google Scholar
  104. Aldrich, L. T. & Nier, A. O. Variation of He-3 He-4 abundance ratio in natural sources of helium. Phys. Rev. 74, 1225–1225 (1948).
    Google Scholar
  105. Reynolds, J. H. High sensitivity mass spectrometer for noble gas analysis. Rev. Sci. Instrum. 27, 928–934 (1956).
    ADS Google Scholar
  106. Niedermann, S. et al. Cosmic-ray-produced 21Ne in terrestrial quartz: the neon inventory of Sierra Nevada quartz separates. Earth Planet. Sci. Lett. 125, 341–355 (1994).
    ADS Google Scholar
  107. Niedermann, S., Graf, T. & Marti, K. Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components. Earth Planet. Sci. Lett. 118, 65–73 (1993).
    ADS Google Scholar
  108. Ritter, B., Vogt, A. & Dunai, T. J. Technical Note: Noble gas extraction procedure and performance of the Cologne Helix MC Plus multi-collector noble gas mass spectrometer for cosmogenic neon isotope analysis. Geochronol. Discuss. 2021, 1–16 (2021).
    Google Scholar
  109. Renne, P. R., Farley, K. A., Becker, T. A. & Sharp, W. D. Terrestrial cosmogenic argon. Earth Planet. Sci. Lett. 188, 435–440 (2001).
    ADS Google Scholar
  110. Niedermann, S., Schaefer, J. M., Wieler, R. & Naumann, R. The production rate of cosmogenic 38Ar from calcium in terrestrial pyroxene. Earth Planet. Sci. Lett. 257, 596–608 (2007).
    ADS Google Scholar
  111. Raab, E. L., Prentiss, M., Cable, A., Chu, S. & Pritchard, D. E. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 59, 2631–2634 (1987).
    ADS Google Scholar
  112. Granger, D. E., Lifton, N. A. & Willenbring, J. K. A cosmic trip: 25 years of cosmogenic nuclides in geology. Geol. Soc. Am. Bull. 125, 1379–1402 (2013).
    ADS Google Scholar
  113. Putnam, A. E. et al. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal. Nat. Geosci. 3, 700–704 (2010).
    ADS Google Scholar
  114. Spector, P. et al. Rapid early-Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).
    ADS Google Scholar
  115. Ullman, D. J. et al. Southern Laurentide ice-sheet retreat synchronous with rising boreal summer insolation. Geology 43, 23–26 (2015).
    ADS Google Scholar
  116. Kelly, M. A. et al. Expanded glaciers during a dry and cold Last Glacial Maximum in equatorial East Africa. Geology 42, 519–522 (2014).
    ADS Google Scholar
  117. Levy, L. B. et al. Coeval fluctuations of the Greenland Ice Sheet and a local glacier, central East Greenland, during late glacial and early Holocene time. Geophys. Res. Lett. 43, 1623–1631 (2016).
    ADS Google Scholar
  118. Schaefer, J. M. et al. The Southern Glacial Maximum 65,000 years ago and its unfinished termination. Quat. Sci. Rev. 114, 52–60 (2015).
    ADS Google Scholar
  119. Strand, P. D. et al. Millennial-scale pulsebeat of glaciation in the Southern Alps of New Zealand. Quat. Sci. Rev. 220, 165–177 (2019).
    ADS Google Scholar
  120. Young, N. E. et al. Deglaciation of the Greenland and Laurentide ice sheets interrupted by glacier advance during abrupt coolings. Quat. Sci. Rev. 229, 106091 (2020).
    Google Scholar
  121. Zhang, Q. et al. Quaternary glaciations in the Lopu Kangri area, central Gangdise Mountains, southern Tibetan Plateau. Quat. Sci. Rev. 201, 470–482 (2018).
    ADS Google Scholar
  122. Ivy-Ochs, S. et al. The timing of glacier advances in the northern European Alps based on surface exposure dating with cosmogenic Be-10, Al-26, Cl-36, and Ne-21. GSA Spec. Pap. 415, 43–60 (2006).
    Google Scholar
  123. Ivy-Ochs, S. et al. Chronology of the last glacial cycle in the European Alps. J. Quat. Sci. 23, 559–573 (2008).
    Google Scholar
  124. Larsen, N. K. et al. Holocene ice marginal fluctuations of the Qassimiut lobe in South Greenland. Sci. Rep. 6, 22362 (2016).
    ADS Google Scholar
  125. Larsen, N. K. et al. Strong altitudinal control on the response of local glaciers to Holocene climate change in southwest Greenland. Quat. Sci. Rev. 168, 69–78 (2017).
    ADS Google Scholar
  126. Levy, L. B. et al. Multi-phased deglaciation of south and southeast Greenland controlled by climate and topographic setting. Quat. Sci. Rev. 242, 106454 (2020).
    Google Scholar
  127. Claude, A. et al. The Chironico landslide (Valle Leventina, southern Swiss Alps): age and evolution. Swiss J. Geosci. 107, 273–291 (2014).
    Google Scholar
  128. Putnam, A. et al. In situ cosmogenic 10Be production-rate calibration from the Southern Alps, New Zealand. Quat. Geochronol. 5, 392–409 (2010).
    Google Scholar
  129. Briner, J. P., Young, N. E., Goehring, B. & Schaefer, J. M. Constraining Holocene 10Be production rates in Greenland. J. Quat. Sci. 27, 2–6 (2012).
    Google Scholar
  130. Fenton, C. R. et al. Regional 10Be production rate calibration for the past 12 ka deduced from the radiocarbon-dated Grotlandsura and Russenes rock avalanches at 69° N, Norway. Quat. Geochronol. 6, 437–452 (2011).
    Google Scholar
  131. Young, N. E., Schaefer, J. M., Briner, J. P. & Goehring, B. M. A Be-10 production-rate calibration for the Arctic. J. Quat. Sci. 28, 515–526 (2013).
    Google Scholar
  132. Borchers, B. et al. Geological calibration of spallation production rates in the CRONUS-Earth Project. Quat. Geochronol. 31, 188–198 (2016).
    Google Scholar
  133. Schimmelpfennig, I. et al. Calibration of the in situ cosmogenic 14C production rate in New Zealand’s Southern Alps. J. Quat. Sci. 27, 671–674 (2012).
    Google Scholar
  134. Young, N. E. et al. West Greenland and global in situ C-14 production-rate calibrations. J. Quat. Sci. 29, 401–406 (2014).
    Google Scholar
  135. Fenton, C. R., Niedermann, S., Dunai, T. & Binnie, S. A. The SPICE project: production rates of cosmogenic Ne-21, Be-10, and C-14 in quartz from the 72 ka SP basalt flow, Arizona, USA. Quat. Geochronol. 54, 101019 (2019).
    Google Scholar
  136. Lal, D., Malhotra, P. K. & Peters, B. On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J. Atmos. Terr. Phys. 12, 306–328 (1958).
    ADS Google Scholar
  137. Argento, D. C., Stone, J. O., Reedy, R. C. & O’Brien, K. Physics-based modeling of cosmogenic nuclides part I — radiation transport methods and new insights. Quat. Geochronol. 26, 29–43 (2015).
    Google Scholar
  138. Argento, D. C., Stone, J. O., Reedy, R. C. & O’Brien, K. Physics-based modeling of cosmogenic nuclides part II — key aspects of in-situ cosmogenic nuclide production. Quat. Geochronol. 26, 44–55 (2015).
    Google Scholar
  139. Lifton, N., Sato, T. & Dunai, T. J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 386, 149–160 (2014).
    ADS Google Scholar
  140. Masarik, J. & Reedy, R. C. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth Planet. Sci. Lett. 136, 381–395 (1995).
    ADS Google Scholar
  141. Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from Be-10 and Al-26 measurements. Quat. Geochronol. 3, 174–195 (2008).
    Google Scholar
  142. Marrero, S. M. et al. Cosmogenic nuclide systematics and the CRONUScalc program. Quat. Geochronol. 31, 160–187 (2016).
    Google Scholar
  143. Akçar, N. et al. The AD 1717 rock avalanche deposits in the upper Ferret Valley (Italy): a dating approach with cosmogenic 10Be. J. Quat. Sci. 27, 383–392 (2012).
    Google Scholar
  144. Kaplan, M. et al. Patagonian and southern South Atlantic view of Holocene climate. Quat. Sci. Rev. 141, 112–125 (2016).
    ADS Google Scholar
  145. Putnam, A. E. et al. Regional climate control of glaciers in New Zealand and Europe during the pre-industrial Holocene. Nat. Geosci. 5, 627–630 (2012).
    ADS Google Scholar
  146. Reynhout, S. et al. Holocene glacier fluctuations in Patagonia are modulated by summer insolation intensity and paced by Southern Annular Mode-like variability. Quat. Sci. Rev. 220, 178–187 (2019).
    ADS Google Scholar
  147. Schimmelpfennig, I. et al. Holocene glacier culminations in the Western Alps and their hemispheric relevance. Geology 40, 891–894 (2012).
    ADS Google Scholar
  148. Eaves, S. R. et al. Late-glacial and Holocene glacier fluctuations in North Island, New Zealand. Quat. Sci. Rev. 223, 105914 (2019).
    Google Scholar
  149. Schimmelpfennig, I. et al. A chronology of Holocene and Little Ice Age glacier culminations of the Steingletscher, CentralAlps, Switzerland, based on high-sensitivity beryllium-10 moraine dating. Earth Planet. Sci. Lett. 393, 220–230 (2014).
    ADS Google Scholar
  150. Halsted, C. T., Bierman, P. R. & Balco, G. Empirical evidence for latitude and altitude variation of the in situ cosmogenic 26Al/10Be production ratio. Geosciences 11, 402 (2021).
    ADS Google Scholar
  151. Balco, G. Chlorine-36∕beryllium-10 burial dating of alluvial fan sediments associated with the Mission Creek strand of the San Andreas Fault system, California, USA. Geochronology 1, 1–16 (2019).
    ADS Google Scholar
  152. Goehring, B. M., Muzikar, P. & Lifton, N. A. An in situ 14C–10Be Bayesian isochron approach for interpreting complex glacial histories. Quat. Geochronol. 15, 61–66 (2013).
    Google Scholar
  153. Brown, L., Pavich, M. J., Hickman, R. E., Klein, J. & Middleton, R. Erosion of the eastern-United-States observed with Be-10. Earth Surf. Process. Landf. 13, 441–457 (1988).
    ADS Google Scholar
  154. Codilean, A. T. et al. OCTOPUS: an open cosmogenic isotope and luminescence database. Earth Syst. Sci. Data 10, 2123–2139 (2018).
    ADS Google Scholar
  155. Kirchner, J. W. et al. Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales. Geology 29, 591–594 (2001).
    ADS Google Scholar
  156. Riebe, C. S., Kirchner, J. W., Granger, D. E. & Finkel, R. C. Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic Al-26 and Be-10 in alluvial sediment. Geology 28, 803–806 (2000).
    ADS Google Scholar
  157. Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. & Finkel, R. C. The soil production function and landscape equilibrium. Nature 388, 358–361 (1997).
    ADS Google Scholar
  158. Schaller, M. & Ehlers, T. A. Limits to quantifying climate driven changes in denudation rates with cosmogenic radionuclides. Earth Planet. Sci. Lett. 248, 153–167 (2006).
    ADS Google Scholar
  159. Allen, P. A. From landscapes into geological history. Nature 451, 274–276 (2008).
    ADS Google Scholar
  160. Cyr, A. J. & Granger, D. E. Dynamic equilibrium among erosion, river incision, and coastal uplift in the northern and central Apennines, Italy. Geology 36, 103–106 (2008).
    ADS Google Scholar
  161. Grischott, R. et al. Millennial scale variability of denudation rates for the last 15 kyr inferred from the detrital Be-10 record of Lake Stappitz in the Hohe Tauern massif, Austrian Alps. Holocene 27, 1914–1927 (2017).
    ADS Google Scholar
  162. Madella, A., Delunel, R., Akcar, N., Schlunegger, F. & Christl, M. Be-10-inferred paleo-denudation rates imply that the mid-Miocene western central Andes eroded as slowly as today. Sci. Rep. 8, 2299 (2018).
    ADS Google Scholar
  163. Oskin, M. E. et al. Steady Be-10-derived paleoerosion rates across the Plio-Pleistocene climate transition, Fish Creek-Vallecito basin, California. J. Geophys. Res. Earth Surf. 122, 1653–1677 (2017).
    ADS Google Scholar
  164. Gerber, C. et al. Using Kr-81 and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochim. Cosmochim. Acta 205, 187–210 (2017).
    ADS Google Scholar
  165. Weber, N. et al. The circulation of the Dead Sea brine in the regional aquifer. Earth Planet. Sci. Lett. 493, 242–261 (2018).
    ADS Google Scholar
  166. Yechieli, Y. et al. Recent seawater intrusion into deep aquifer determined by the radioactive noble-gas isotopes Kr-81 and Ar-39. Earth Planet. Sci. Lett. 507, 21–29 (2019).
    ADS Google Scholar
  167. Ram, R. et al. Identifying recharge processes into a vast “fossil” aquifer based on dynamic groundwater Kr-81 age evolution. J. Hydrol. 587, 124946 (2020).
    Google Scholar
  168. Yokochi, R. et al. Radiokrypton unveils dual moisture sources of a deep desert aquifer. Proc. Natl Acad. Sci. USA 116, 16222–16227 (2019).
    ADS Google Scholar
  169. Zhang, J. et al. Inflection points on groundwater age and geochemical profiles along wellbores light up hierarchically nested flow systems. Geophys. Res. Lett. 48, e2020GL092337 (2021).
    ADS Google Scholar
  170. Aggarwal, P. K. et al. Continental degassing of He-4 by surficial discharge of deep groundwater. Nat. Geosci. 8, 35–39 (2015).
    ADS Google Scholar
  171. Matsumoto, T. et al. Application of combined Kr-81 and He-4 chronometers to the dating of old groundwater in a tectonically active region of the North China Plain. Earth Planet. Sci. Lett. 493, 208–217 (2018).
    ADS Google Scholar
  172. Matsumoto, T. et al. Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating. Earth Planet. Sci. Lett. 535, 116120 (2020).
    Google Scholar
  173. Buizert, C. et al. Radiometric Kr-81 dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proc. Natl Acad. Sci. USA 111, 6876–6881 (2014).
    ADS Google Scholar
  174. Crotti, I. et al. An extension of the TALDICE ice core age scale reaching back to MIS 10.1. Quat. Sci. Rev. 266, 107078 (2021).
    Google Scholar
  175. Crotti, I. et al. New δ18Oatm, δ18Oice and δDice profiles from deep ice of the TALDICE core. EGU General Assembly 2020 https://doi.org/10.5194/egusphere-egu2020-4179 (2020).
  176. Dixon, J. L. & Riebe, C. S. Tracing and pacing soil across slopes. Elements 10, 363–368 (2014).
    Google Scholar
  177. Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–419 (2013).
    ADS Google Scholar
  178. Hippe, K. Constraining processes of landscape change with combined in situ cosmogenic C-14–Be-10 analysis. Quat. Sci. Rev. 173, 1–19 (2017).
    ADS Google Scholar
  179. Mudd, S. M., Harel, M.-A., Hurst, M. D., Grieve, S. W. D. & Marrero, S. M. The CAIRN method: automated, reproducible calculation of catchment-averaged denudation rates from cosmogenic nuclide concentrations. Earth Surf. Dyn. 4, 655–674 (2016).
    ADS Google Scholar
  180. Portenga, E. W. & Bierman, P. R. Understanding Earth’s eroding surface with 10Be. GSA Today 21, 4–10 (2011).
    Google Scholar
  181. Willenbring, J. K., Codilean, A. T. & McElroy, B. Earth is (mostly) flat: apportionment of the flux of continental sediment over millennial time scales. Geology 41, 343–346 (2013).
    ADS Google Scholar
  182. Harel, M. A., Mudd, S. M. & Attal, M. Global analysis of the stream power law parameters based on worldwide Be-10 denudation rates. Geomorphology 268, 184–196 (2016).
    ADS Google Scholar
  183. Ben-Israel, M., Matmon, A., Hidy, A. J., Avni, Y. & Balco, G. Early-to-mid Miocene erosion rates inferred from pre-Dead Sea rift Hazeva River fluvial chert pebbles using cosmogenic Ne-21. Earth Surf. Dyn. 8, 289–301 (2020).
    ADS Google Scholar
  184. Rosenkranz, R., Schildgen, T., Wittmann, H. & Spiegel, C. Coupling erosion and topographic development in the rainiest place on Earth: Reconstructing the Shillong Plateau uplift history with in-situ cosmogenic Be-10. Earth Planet. Sci. Lett. 483, 39–51 (2018).
    ADS Google Scholar
  185. Brocard, G. Y., Willenbring, J. K., Miller, T. E. & Scatena, F. N. Relict landscape resistance to dissection by upstream migrating knickpoints. J. Geophys. Res. Earth Surf. 121, 1182–1203 (2016).
    ADS Google Scholar
  186. Hewawasam, T., von Blanckenburg, F., Schaller, M. & Kubik, P. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology 31, 597–600 (2003).
    ADS Google Scholar
  187. Bekaddour, T. et al. Paleo erosion rates and climate shifts recorded by Quaternary cut-and-fill sequences in the Pisco Valley, central Peru. Earth Planet. Sci. Lett. 390, 103–115 (2014).
    ADS Google Scholar
  188. Fuller, T. K., Perg, L. A., Willenbring, J. K. & Lepper, K. Field evidence for climate-driven changes in sediment supply leading to strath terrace formation. Geology 37, 467–470 (2009).
    ADS Google Scholar
  189. Garcin, Y. et al. Short-lived increase in erosion during the African Humid Period: evidence from the northern Kenya Rift. Earth Planet. Sci. Lett. 459, 58–69 (2017).
    ADS Google Scholar
  190. Grischott, R. et al. Constant denudation rates in a high alpine catchment for the last 6 kyrs. Earth Surf. Process. Landf. 42, 1065–1077 (2017).
    ADS Google Scholar
  191. Marshall, J. A., Roering, J. J., Gavin, D. G. & Granger, D. E. Late Quaternary climatic controls on erosion rates and geomorphic processes in western Oregon, USA. Geol. Soc. Am. Bull. 129, 715–731 (2017).
    ADS Google Scholar
  192. Schaller, M. et al. A 30 000 yr record of erosion rates from cosmogenic Be-10 in Middle European river terraces. Earth Planet. Sci. Lett. 204, 307–320 (2002).
    ADS Google Scholar
  193. Haeuselmann, P., Granger, D. E., Jeannin, P. Y. & Lauritzen, S. E. Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology 35, 143–146 (2007).
    ADS Google Scholar
  194. Mason, C. C. & Romans, B. W. Climate-driven unsteady denudation and sediment flux in a high-relief unglaciated catchment-fan using Al-26 and Be-10: Panamint Valley, California. Earth Planet. Sci. Lett. 492, 130–143 (2018).
    ADS Google Scholar
  195. Pingel, H., Schildgen, T., Strecker, M. R. & Wittmann, H. Pliocene–Pleistocene orographic control on denudation in northwest Argentina. Geology 47, 359–362 (2019).
    ADS Google Scholar
  196. Balco, G. & Stone, J. O. H. Measuring middle Pleistocene erosion rates with cosmic-ray-produced nuclides in buried alluvial sediment, Fisher Valley, southeastern Utah. Earth Surf. Process. Landf. 30, 1051–1067 (2005).
    ADS Google Scholar
  197. Val, P., Hoke, G. D., Fosdick, J. C. & Wittmann, H. Reconciling tectonic shortening, sedimentation and spatial patterns of erosion from 10Be paleo-erosion rates in the Argentine Precordillera. Earth Planet. Sci. Lett. 450, 173–185 (2016).
    ADS Google Scholar
  198. Puchol, N. et al. Limited impact of Quaternary glaciations on denudation rates in Central Asia. Geol. Soc. Am. Bull. 129, 479–499 (2017).
    ADS Google Scholar
  199. Charreau, J. et al. Paleo-erosion rates in Central Asia since 9 Ma: a transient increase at the onset of Quaternary glaciations? Earth Planet. Sci. Lett. 304, 85–92 (2011).
    ADS Google Scholar
  200. Mariotti, A. et al. Nonlinear forcing of climate on mountain denudation during glaciations. Nat. Geosci. 14, 16–22 (2021).
    ADS Google Scholar
  201. Masson-Delmotte, V. et al. in Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty 32 (World Meteorological Organization, 2018).
  202. Tedesco, M. & Fettweis, X. Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland Ice Sheet. Cryosphere 14, 1209–1223 (2020).
    ADS Google Scholar
  203. Sasgen, I. et al. Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ. 1, 8 (2020).
    ADS Google Scholar
  204. Briner, J. P. et al. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586, 70–74 (2020).
    ADS Google Scholar
  205. Larsen, N. K. et al. The response of the southern Greenland Ice Sheet to the Holocene thermal maximum. Geology 43, 291–294 (2015).
    ADS Google Scholar
  206. Beel, C. R., Lifton, N. A., Briner, J. P. & Goehring, B. M. Quaternary evolution and ice sheet history of contrasting landscapes in Uummannaq and Sukkertoppen, western Greenland. Quat. Sci. Rev. 149, 248–258 (2016).
    ADS Google Scholar
  207. Briner, J. P. et al. Holocene climate change in Arctic Canada and Greenland. Quat. Sci. Rev. 147, 340–364 (2016).
    ADS Google Scholar
  208. Kelly, M. A. et al. A 10Be chronology of lateglacial and Holocene mountain glaciation in the Scoresby Sund region, east Greenland: implications for seasonality during lateglacial time. Quat. Sci. Rev. 27, 2273–2282 (2008).
    ADS Google Scholar
  209. Bierman, P. R. et al. Preservation of a preglacial landscape under the center of the Greenland Ice Sheet. Science 344, 402–405 (2014).
    ADS Google Scholar
  210. Bierman, P. R., Shakun, J. D., Corbett, L. B., Zimmerman, S. R. & Rood, D. H. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature 540, 256–260 (2016).
    ADS Google Scholar
  211. Yau, A. M., Bender, M. L., Blunier, T. & Jouzel, J. Setting a chronology for the basal ice at Dye-3 and GRIP: implications for the long-term stability of the Greenland Ice Sheet. Earth Planet. Sci. Lett. 451, 1–9 (2016).
    ADS Google Scholar
  212. NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).
    ADS Google Scholar
  213. Schaefer, J. M. et al. Greenland was nearly ice-free for extended periods during the Pleistocene. Nature 540, 252–255 (2016).
    ADS Google Scholar
  214. Christ, A. J. et al. A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century. Proc. Natl Acad. Sci. USA 118, e2021442118 (2021).
    Google Scholar
  215. Voosen, P. Greenland rock cores to trace ice’s past melting. Science 369, 19 (2020).
    ADS Google Scholar
  216. Prush, V. B. & Oskin, M. E. A mechanistic erosion model for cosmogenic nuclide inheritance in single-clast exposure ages. Earth and Planet. Sci. Lett. 535, 116066 (2020).
    Google Scholar
  217. Balco, G., Purvance, M. D. & Rood, D. H. Exposure dating of precariously balanced rocks. Quat. Geochronol. 6, 295–303 (2011).
    Google Scholar
  218. Rood, A. H. et al. Earthquake hazard uncertainties improved using precariously balanced rocks. AGU Adv. 1, e2020AV000182 (2020).
    ADS Google Scholar
  219. Soldati, M., Barrows, T. T., Prampolini, M. & Fifield, K. L. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea). J. Coast. Conserv. 22, 831–844 (2018).
    Google Scholar
  220. Hurst, M. D., Rood, D. H., Ellis, M. A., Anderson, R. S. & Dornbusch, U. Recent acceleration in coastal cliff retreat rates on the south coast of Great Britain. Proc. Natl Acad. Sci. USA 113, 13336–13341 (2016).
    ADS Google Scholar
  221. Ramalho, R. S. et al. Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Sci. Adv. 1, e1500456 (2015).
    ADS Google Scholar
  222. Tremblay, M. M., Shuster, D. L., Balco, G. & Cassata, W. S. Neon diffusion kinetics and implications for cosmogenic neon paleothermometry in feldspars. Geochim. Cosmochim. Acta 205, 14–30 (2017).
    ADS Google Scholar
  223. Zeitler, P. K. & Tremblay, M. M. Measuring noble gases for thermochronology. Elements 16, 343–345 (2020).
    Google Scholar
  224. Tremblay, M. M. & Cassata, W. S. Noble gas thermochronology of extraterrestrial materials. Elements 16, 331–336 (2020).
    Google Scholar
  225. Clarke, R. J., Partridge, T. C., Granger, D. E. & Caffe, M. W. Dating the Sterkfontein fossils. Science 301, 596–597 (2003).
    Google Scholar
  226. Stuart, F. M. & Dunai, T. J. Editorial. Quat. Geochronol. 4, 435–436 (2009).
    Google Scholar
  227. Binnie, S. A. et al. Preliminary results of CoQtz-N: a quartz reference material for terrestrial in situ cosmogenic Be-10 and Al-26 measurements. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 456, 203–212 (2019).
    ADS Google Scholar
  228. Jull, A. J. T., Scott, E. M. & Bierman, P. The CRONUS-Earth inter-comparison for cosmogenic isotope analysis. Quat. Geochronol. 26, 3–10 (2015).
    Google Scholar
  229. Vermeesch, P. et al. Interlaboratory comparison of cosmogenic 21Ne in quartz. Quat. Geochronol. 26, 20–28 (2015).
    Google Scholar
  230. Corbett, L. B., Bierman, P. R., Woodruff, T. E. & Caffee, M. W. A homogeneous liquid reference material for monitoring the quality and reproducibility of in situ cosmogenic 10Be and 26Al analyses. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 456, 180–185 (2019).
    ADS Google Scholar
  231. Dunai, T. J. & Stuart, F. M. Reporting of cosmogenic nuclide data for exposure age and erosion rate determinations. Quat. Geochronol. 4, 437–440 (2009).
    Google Scholar
  232. Frankel, K. L., Finkel, R. C. & Owen, L. A. Terrestrial cosmogenic nuclide geochronology data reporting standards needed. EOS Trans. AGU 91, 31–32 (2010).
    ADS Google Scholar
  233. Wilkinson, M. D. et al. Comment: the FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
    Google Scholar
  234. Heyman, J. Paleoglaciation of the Tibetan Plateau and surrounding mountains based on exposure ages and ELA depression estimates. Quat. Sci. Rev. 91, 30–41 (2014).
    ADS Google Scholar
  235. Blanckenburg, F. V., Belshaw, N. S. & O’Nions, R. K. Separation of Be-9 and cosmogenic Be-10 from environmental materials and SIMS isotope dilution analysis. Chem. Geol. 129, 93–99 (1996).
    ADS Google Scholar
  236. Binnie, S. A. et al. Separation of Be and Al for AMS using single-step column chromatography. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 361, 397–401 (2015).
    ADS Google Scholar
  237. Corbett, L. B., Bierman, P. R. & Rood, D. H. An approach for optimizing in situ cosmogenic Be-10 sample preparation. Quat. Geochronol. 33, 24–34 (2016).
    Google Scholar
  238. Keddadouche, K. et al. Design and performance of an automated chemical extraction bench for the preparation of Be-10 and Al-26 targets to be analyzed by accelerator mass spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 456, 230–235 (2019).
    ADS Google Scholar
  239. Enge, T. G. et al. An automated chromatography procedure optimized for analysis of stable Cu isotopes from biological materials. J. Anal. At. Spectrom. 31, 2023–2030 (2016).
    Google Scholar
  240. Retzmann, A., Zimmermann, T., Pröfrock, D., Prohaska, T. & Irrgeher, J. A fully automated simultaneous single-stage separation of Sr, Pb, and Nd using DGA Resin for the isotopic analysis of marine sediments. Anal. Bioanal. Chem. 409, 5463–5480 (2017).
    Google Scholar
  241. Wefing, A.-M. et al. High precision U-series dating of scleractinian cold-water corals using an automated chromatographic U and Th extraction. Chem. Geol. 475, 140–148 (2017).
    ADS Google Scholar
  242. Romaniello, S. J. et al. Fully automated chromatographic purification of Sr and Ca for isotopic analysis. J. Anal. At. Spectrom. 30, 1906–1912 (2015).
    Google Scholar
  243. Lamp, J. L. et al. Update on the cosmogenic in situ 14C laboratory at the Lamont–Doherty Earth Observatory. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 456, 157–162 (2019).
    ADS Google Scholar
  244. Altenkirch, R. et al. Operating the 120° Dipol-Magnet at the CologneAMS in a gas-filled mode. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 438, 184–188 (2019).
    ADS Google Scholar
  245. Vockenhuber, C., Miltenberger, K.-U. & Synal, H.-A. 36Cl measurements with a gas-filled magnet at 6 MV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 455, 190–194 (2019).
    ADS Google Scholar
  246. Codilean, A. T. et al. Single-grain cosmogenic Ne-21 concentrations in fluvial sediments reveal spatially variable erosion rates. Geology 36, 159–162 (2008).
    ADS Google Scholar
  247. McPhillips, D., Bierman, P. R. & Rood, D. H. Millennial-scale record of landslides in the Andes consistent with earthquake trigger. Nat. Geosci. 7, 925–930 (2014).
    ADS Google Scholar
  248. Carretier, S., Regard, V., Leanni, L. & Farias, M. Long-term dispersion of river gravel in a canyon in the Atacama Desert, Central Andes, deduced from their Be-10 concentrations. Sci. Rep. 9, 17763 (2019).
    ADS Google Scholar
  249. Muzikar, P. Episodic erosion with a power law probability density, and the accumulation of cosmogenic nuclides. J. Geophys. Res. Earth Surf. 124, 2345–2355 (2019).
    ADS Google Scholar
  250. Skov, D. S., Egholm, D. L., Jansen, J. D., Sandiford, M. & Knudsen, M. F. Detecting landscape transience with in situ cosmogenic C-14 and Be-10. Quat. Geochronol. 54, 101008 (2019).
    Google Scholar
  251. Charreau, J. et al. Basinga: a cell-by-cell GIS toolbox for computing basin average scaling factors, cosmogenic production rates and denudation rates. Earth Surf. Process. Landf. 44, 2349–2365 (2019).
    ADS Google Scholar
  252. Dannhaus, N., Wittmann, H., Kram, P., Christl, M. & von Blanckenburg, F. Catchment-wide weathering and erosion rates of mafic, ultramafic, and granitic rock from cosmogenic meteoric Be-10/Be-9 ratios. Geochim. Cosmochim. Acta 222, 618–641 (2018).
    ADS Google Scholar
  253. Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic meridional overturning circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).
    ADS Google Scholar
  254. Chafik, L., Nilsen, J. E. Ø., Dangendorf, S., Reverdin, G. & Frederikse, T. North Atlantic Ocean circulation and decadal sea level change during the altimetry era. Sci. Rep. 9, 1041 (2019).
    ADS Google Scholar
  255. Carter, B. R. et al. Pacific anthropogenic carbon between 1991 and 2017. Glob. Biogeochem. Cycles 33, 597–617 (2019).
    Google Scholar
  256. Ebser, S. et al. Ar-39 dating with small samples provides new key constraints on ocean ventilation. Nat. Commun. 9, 5046 (2018).
    ADS Google Scholar
  257. Wang, J. S. et al. Optical excitation and trapping of Kr-81. Phys. Rev. Lett. 127, 023201 (2021).
    ADS Google Scholar
  258. Yusoff, K. A Billion Black Anthropocenes or None (Univ. Minnesota Press, 2018).
  259. Sahagun, L. Caltech says it regrets drilling holes in sacred Native American petroglyph site. Los Angeles Times https://www.latimes.com/environment/story/2021-07-19/caltech-fined-for-damaging-native-american-cultural-site (2021).
  260. Bacon-Bercey, J. Statistics on Black meteorologists in six organizational units of the Federal Government. Bull. Am. Meteorol. Soc. 59, 576–580 (1978).
    ADS Google Scholar
  261. Morris, V. R. Combating racism in the geosciences: reflections from a black professor. AGU Adv. 2, e2020AV000358 (2021).
    ADS Google Scholar
  262. Ali, H. N. et al. An actionable anti-racism plan for geoscience organizations. Nat. Commun. 12, 3794 (2021).
    ADS Google Scholar
  263. Hofstra, B. et al. The diversity–innovation paradox in science. Proc. Natl Acad. Sci. USA 117, 9284 (2020).
    Google Scholar
  264. Garcia, A. A., Semken, S. & Brandt, E. The construction of cultural consensus models to characterize ethnogeological knowledge. Geoheritage 12, 59 (2020).
    Google Scholar
  265. Handley, H. K. et al. In Australasia, gender is still on the agenda in geosciences. Adv. Geosci. 53, 205–226 (2020).
    Google Scholar
  266. Piccoli, F. & Guidobaldi, G. A report on gender diversity and equality in the geosciences: an analysis of the Swiss Geoscience Meetings from 2003 to 2019. Swiss J. Geosci. 114, 1 (2021).
    Google Scholar
  267. Stone, J. O. Air pressure and cosmogenic isotope production. J. Geophys. Res. 105, 23753–23759 (2000).
    ADS Google Scholar
  268. Heisinger, B. et al. Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth Planet. Sci. Lett. 200, 357–369 (2002).
    ADS Google Scholar
  269. Heisinger, B. et al. Production of selected cosmogenic radionuclides by muons; 1. Fast muons. Earth Planet. Sci. Lett. 200, 345–355 (2002).
    ADS Google Scholar
  270. Dunai, T. J. & Lifton, N. A. The nuts and bolts of cosmogenic nuclide production. Elements 10, 347–350 (2014).
    Google Scholar
  271. Dunai, J. T. Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences (Cambridge Univ. Press, 2010).
  272. Bourles, D., Raisbeck, G. M. & Yiou, F. 10Be and 9Be in marine sediments and their potential for dating. Geochim. Cosmochim. Acta 53, 443–452 (1989).
    ADS Google Scholar
  273. Pastuovic, Z. et al. SIRIUS — a new 6 MV accelerator system for IBA and AMS at ANSTO. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 371, 142–147 (2016).
    ADS Google Scholar
  274. Synal, H.-A., Stocker, M. & Suter, M. MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 259, 7–13 (2007).
    ADS Google Scholar
  275. Chen, C. Y. et al. Ultrasensitive isotope trace analyses with a magneto-optical trap. Science 286, 1139–1141 (1999).
    Google Scholar
  276. von Blanckenburg, F. & Willenbring, J. Cosmogenic nuclides: dates and rates of earth-surface change. Elements 10, 341–346 (2014).
    Google Scholar
  277. Granger, D. E. & Schaller, M. Cosmogenic nuclides and erosion at the watershed scale. Elements 10, 369–373 (2014).
    Google Scholar
  278. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, 153 (2015).
    Google Scholar
  279. Melles, M. et al. 2.8 Million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science 337, 315–320 (2012).
    ADS Google Scholar
  280. Funder, S. et al. A 10,000-year record of Arctic Ocean sea-ice variability — view from the beach. Science 333, 747–750 (2011).
    ADS Google Scholar
  281. Fülöp, R. H., Wacker, L. & Dunai, T. J. Progress report on a novel in situ 14C extraction scheme at the University of Cologne. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 361, 20–24 (2015).
    ADS Google Scholar
  282. Blard, P. H. et al. An inter-laboratory comparison of cosmogenic 3He and radiogenic 4He in the CRONUS-P pyroxene standard. Quat. Geochronol. 26, 11–19 (2015).
    Google Scholar
  283. Mechernich, S. et al. Carbonate and silicate intercomparison materials for cosmogenic Cl-36 measurements. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 455, 250–259 (2019).
    ADS Google Scholar
  284. Fraser, B. News in Focus: Daring scientists extract ice from Earth’s highest tropical glacier. Nature 573, 171–172 (2019).
    ADS Google Scholar
  285. North, M. A., Hastie, W. W. & Hoyer, L. Out of Africa: The underrepresentation of African authors in high-impact geoscience literature. Earth Sci. Rev. 208, 103262 (2020).
    Google Scholar
  286. Fiser, R., Lozier, S., Graumlich, L. & White, L. AGU releases 2020 annual DEI report and new DEI dashboard (American Geophysical Union, 2021).
  287. Wadman, M. Disturbing allegations of sexual harassment in Antarctica leveled at noted scientist. Science https://doi.org/10.1126/science.aaq1428 (2017).
  288. Crenshaw, K. Demarginalizing the intersection of race and sex: a black feminist critique of antidiscrimination doctrine, feminist theory, and antiracist politics. Univ. Chic. Leg. Forum 1, 139–167 (1989).
    Google Scholar
  289. Núñez, A.-M., Rivera, J. & Hallmark, T. Applying an intersectionality lens to expand equity in the geosciences. J. Geosci. Educ. 68, 97–114 (2020).
    ADS Google Scholar

Download references