Decision making by p53: life, death and cancer (original) (raw)
Oren M and Rotter V (1999) Introduction: p53–the first twenty years. Cell Mol. Life Sci.55: 9–11 CASPubMed Google Scholar
Alarcon-Vargas D and Ronai Z (2002) p53-Mdm2 – the affair that never ends. Carcinogenesis23: 541–547 CASPubMed Google Scholar
Ashcroft M, Taya Y and Vousden KH (2000) Stress signals utilize multiple pathways to stabilize p53. Mol. Cell Biol.20: 3224–3233 CASPubMedPubMed Central Google Scholar
Bargonetti J and Manfredi JJ (2002) Multiple roles of the tumor-suppressor p53. Curr. Opin. Oncol.14: 86–91 CASPubMed Google Scholar
Hickman ES, Moroni MC and Helin K (2002) The role of p53 and pRB in apoptosis and cancer. Curr. Opin. Genet. Dev.12: 60–66 CASPubMed Google Scholar
Michael D and Oren M (2002) The p53 and Mdm2 families in cancer. Curr. Opin. Genet. Dev.12: 53–59 CASPubMed Google Scholar
Sears RC and Nevins JR (2002) Signaling networks that link cell proliferation and cell fate. J. Biol. Chem.277: 11617–11620 CASPubMed Google Scholar
Shen Y and White E (2001) p53-dependent apoptosis pathways. Adv. Cancer Res.82: 55–84 CASPubMed Google Scholar
Vogelstein B, Lane D and Levine AJ (2000) Surfing the p53 network. Nature408: 307–310 CASPubMed Google Scholar
Woods DB and Vousden KH (2001) Regulation of p53 function. Exp. Cell Res.264: 56–66 CASPubMed Google Scholar
Kaeser MD and Iggo RD (2002) Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc. Natl. Acad. Sci. USA99: 95–100 CASPubMed Google Scholar
Daujat S, Neel H and Piette J (2001) MDM2: life without p53. Trends Genet.17: 459–464 CASPubMed Google Scholar
Deb SP (2002) Function and dysfunction of the human oncoprotein MDM2. Front Bio. Sci.7: d235–243 CAS Google Scholar
Momand J, Wu HH and Dasgupta G (2000) MDM2--master regulator of the p53 tumor-suppressor protein. Gene.242: 15–29 CASPubMed Google Scholar
Asher G, Lotem J, Kama R, Sachs L and Shaul Y (2002) NQO1 stabilizes p53 through a distinct pathway. Proc. Natl. Acad. Sci. USA99: 3099–3104 CASPubMedPubMed Central Google Scholar
Benetti R, Del Sal G, Monte M, Paroni G, Brancolini C and Schneider C (2001) The death substrate Gas2 binds m-calpain and increases susceptibility to p53-dependent apoptosis. EMBO J.20: 2702–2714 CASPubMedPubMed Central Google Scholar
Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN and Ronai Z (1998) JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev.12: 2658–2663 CASPubMedPubMed Central Google Scholar
Kubbutat MH and Vousden KH (1997) Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol. Cell Biol.17: 460–468 CASPubMedPubMed Central Google Scholar
Weitzman JB, Fiette L, Matsuo K and Yaniv M (2000) JunD protects cells from p53-dependent senescence and apoptosis. Mol. Cell6: 1109–1119 CASPubMed Google Scholar
Tergaonkar V, Pando M, Vafa O, Wahl G and Verma I (2002) p53 stabilization is decreased upon NFkappaB activation. A role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell1: 493–503 CASPubMed Google Scholar
Ryan KM, Ernst MK, Rice NR and Vousden KH (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature404: 892–897 CASPubMed Google Scholar
Chao C, Saito S, Kang J, Anderson CW, Appella E and Xu Y (2000) p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J.19: 4967–4975 CASPubMedPubMed Central Google Scholar
Jimenez GS, Nister M, Stommel JM, Beeche M, Barcarse EA, Zhang XQ, O'Gorman S and Wahl GM (2000) A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nat. Genet.26: 37–43 CASPubMed Google Scholar
Friedlander P, Haupt Y, Prives C and Oren M (1996) A mutant p53 that discriminates between p53 responsive genes cannot induce apoptosis. Mol. Cell Biol.16: 4961–4971 CASPubMedPubMed Central Google Scholar
Ludwig RL, Bates S and Vousden KH (1996) Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol. Cell. Biol.16: 4952–4960 CASPubMedPubMed Central Google Scholar
Lohrum M and Scheidtmann KH (1996) Differential effects of phosphorylation of rat p53 on transactivation of promoters derived from different p53 responsive genes. Oncogene13: 2527–2539 CASPubMed Google Scholar
Oda K, Arakawa H, Tanaka T, Matsuda K, Tanikawa C, Mori T, Nishimori H, Tamai K, Tokino T, Nakamura Y and Taya Y (2000) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell102: 849–862 CASPubMed Google Scholar
Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA, Ambrosino C, Sauter G, Nebreda AR, Anderson CW, Kallioniemi A, Fornace Jr AJ and Appella E (2002) Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat. Genet.31: 210–215 CASPubMed Google Scholar
Chehab NH, Malikzay A, Appel M and Halazonetis TD (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev.14: 278–288 CASPubMedPubMed Central Google Scholar
Jack MT, Woo RA, Hirao A, Cheung A, Mak TW and Lee PW (2002) Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-mediated apoptotic response. Proc. Natl. Acad. Sci. USA99: 9825–9829 CASPubMedPubMed Central Google Scholar
Costanzo A, Merlo P, Pediconi N, Fulco M, Sartorelli V, Cole PA, Fontemaggi G, Fanciulli M, Schiltz L, Blandino G, Balsano C and Levrero M (2002) DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol. Cell9: 175–186 CASPubMed Google Scholar
Wang Y and Prives C (1995) Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature376: 88–91 CASPubMed Google Scholar
Samuels-Lev Y, O'Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S, Campargue I, Naumovski L, Crook T and Lu X (2001) ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell8: 781–794 CASPubMed Google Scholar
Shikama N, Lee CW, France S, Delavaine L, Lyon J, Krstic-Demonacos M and La Thangue NB (1999) A novel cofactor for p300 that regulates the p53 response. Mol. Cell4: 365–376 CASPubMed Google Scholar
Frade R, Balbo M and Barel M (2000) RB18A, whose gene is localized on chromosome 17q12–q21.1, regulates in vivo p53 transactivating activity. Cancer Res.60: 6585–6589 CASPubMed Google Scholar
Rozenfeld-Granot G, Krishnamurthy J, Kannan K, Toren A, Amariglio N, Givol D and Rechavi G (2002) A positive feedback mechanism in the transcriptional activation of Apaf-1 by p53 and the coactivator Zac-1. Oncogene21: 1469–1476 CASPubMed Google Scholar
Szak ST, Mays D and Pietenpol JA (2001) Kinetics of p53 binding to promoter sites in vivo. Mol. Cell Biol.21: 3375–3386 CASPubMedPubMed Central Google Scholar
Contente A, Dittmer A, Koch MC, Roth J and Dobbelstein M (2002) A polymorphic microsatellite that mediates induction of PIG3 by p53. Nat. Genet.30: 315–320 PubMed Google Scholar
Hsieh JK, Yap D, O'Connor DJ, Fogal V, Fallis L, Chan F, Zhong S and Lu X (2002) Novel function of the cyclin A binding site of E2F in regulating p53-induced apoptosis in response to DNA damage. Mol. Cell Biol.22: 78–93 CASPubMedPubMed Central Google Scholar
Rogoff HA, Pickering MT, Debatis ME, Jones S and Kowalik TF (2002) E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis. Mol. Cell Biol.22: 5308–5318 CASPubMedPubMed Central Google Scholar
Moroni MC, Hickman ES, Denchi EL, Caprara G, Colli E, Cecconi F, Muller H and Helin K (2001) Apaf-1 is a transcriptional target for E2F and p53. Nat. Cell Biol.3: 552–558 CASPubMed Google Scholar
Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F and Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature416: 560–564 CASPubMed Google Scholar
Maheswaran S, Englert C, Bennett P, Heinrich G and Haber DA (1995) The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev.9: 2143–2156 CASPubMed Google Scholar
MacLachlan TK, Takimoto R and El-Deiry WS (2002) BRCA1 directs a selective p53-dependent transcriptional response towards growth arrest and DNA repair targets. Mol. Cell Biol.22: 4280–4292 CASPubMedPubMed Central Google Scholar
Dumaz N and Meek DW (1999) Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J.18: 7002–7010 CASPubMedPubMed Central Google Scholar
Lambert PF, Kashanchi F, Radonovich MF, Shiekhattar R and Brady JN (1998) Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem.273: 33048–33053 CASPubMed Google Scholar
Wang T, Kobayashi T, Takimoto R, Denes AE, Snyder EL, el-Deiry WS and Brachmann RK (2001) hADA3 is required for p53 activity. EMBO J.20: 6404–6413 CASPubMedPubMed Central Google Scholar
Ginsberg D, Mechta F, Yaniv M and Oren M (1991) Wild-type p53 can down-modulate the activity of various promoters. Proc. Natl. Acad. Sci. USA88: 9979–9983 CASPubMedPubMed Central Google Scholar
Zilfou JT, Hoffman WH, Sank M, George DL and Murphy M (2001) The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell Biol.21: 3974–3985 CASPubMedPubMed Central Google Scholar
Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L and Debussche L (1998) The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J.17: 4668–4679 CASPubMedPubMed Central Google Scholar
Sabbatini P, Chiou SK, Rao L and White E (1995) Modulation of p53-mediated transcriptional repression and apoptosis by the adenovirus E1B 19 K protein. Mol. Cell Biol.15: 1060–1070 CASPubMedPubMed Central Google Scholar
Shen YQ and Shenk T (1994) Relief of p53-mediated transcriptional repression by the adenovirus E1B 19-kDa protein or the cellular bcl-2 protein. Proc. Natl. Acad. Sci. USA91: 8940–8944 CASPubMedPubMed Central Google Scholar
Ryan KM and Vousden KH (1998) Characterization of structural p53 mutants which show selective defects in apoptosis but not cell cycle arrest. Mol. Cell Biol.18: 3692–3698 CASPubMedPubMed Central Google Scholar
Haldar S, Negrini M, Monne M, Sabbioni S and Croce CM (1994) Downregulation of bcl-2 by p53 in breast cancer cells. Cancer Res.54: 2095–2097 CASPubMed Google Scholar
Miyashita T, Harigai M, Hanada M and Reed JC (1994) Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res.54: 3131–3135 CASPubMed Google Scholar
Sugars KL, Budhram-Mahadeo V, Packham G and Latchman DS (2001) A minimal Bcl-x promoter is activated by Brn-3a and repressed by p53. Nucleic Acids Res.29: 4530–4540 CASPubMedPubMed Central Google Scholar
Hoffman WH, Biade S, Zilfou JT, Chen J and Murphy M (2002) Transcriptional repression of the anti apoptotic survivin gene by wild type p53. J. Biol. Chem.277: 3247–3257 CASPubMed Google Scholar
Mirza A, McGuirk M, Hockenberry TN, Wu Q, Ashar H, Black S, Wen SF, Wang L, Kirschmeier P, Bishop WR, Nielsen LL, Pickett CB and Liu S (2002) Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene21: 2613–2622 CASPubMed Google Scholar
Caelles C, Helmberg A and Karin M (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature370: 220–223 CASPubMed Google Scholar
Haupt Y, Rowan S, Shaulian E, Vousden KH and Oren M (1995) Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Gene Dev.9: 2170–2183 CASPubMed Google Scholar
Wagner AJ, Kokontis JM and Hay N (1994) Myc-mediated apoptosis requiRes wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21(waf1/cip1). Gene Develop.8: 2817–2830 CAS Google Scholar
Baptiste N, Friedlander P, Chen X and Prives C (2002) The proline-rich domain of p53 is required for cooperation with anti neoplastic agents to promote apoptosis of tumor cells. Oncogene21: 9–21 CASPubMed Google Scholar
Matas D, Sigal A, Stambolsky P, Milyavsky M, Weisz L, Schwartz D, Goldfinger N and Rotter V (2001) Integrity of the N-terminal transcription domain of p53 is required for mutant p53 interference with drug-induced apoptosis. EMBO J.20: 4163–4172 CASPubMedPubMed Central Google Scholar
Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R and Weissberg P (1998) Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis [see comments]. Science282: 290–293 CASPubMed Google Scholar
Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P and Green DR (2000) p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J. Biol. Chem.275: 7337–7342 CASPubMed Google Scholar
Ding HF and Fisher DE (2001) p53, caspase 8, and regulation of apoptosis after ionizing radiation. J. Pediatr. Hematol. Oncol.23: 185–188 CASPubMed Google Scholar
Moll UM and Zaika A (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett.493: 65–69 CASPubMed Google Scholar
Regula KM and Kirshenbaum LA (2001) p53 activates the mitochondrial death pathway and apoptosis of ventricular myocytes independent of de novo gene transcription. J. Mol. Cell Cardiol.33: 1435–1445 CASPubMed Google Scholar
Vikhanskaya F, D'Incalci M and Broggini M (1995) Decreased cytotoxic effects of doxorubicin in a human ovarian cancer-cell line expressing wild-type p53 and WAF1/CIP1 genes. Int. J. Cancer61: 397–401 CASPubMed Google Scholar
Malcomson RDG, Oren M, Wyllie AH and Harrison DJ (1995) P53-independent death and p53-induced protection against apoptosis in fibroblasts treated with chemotherapeutic drugs. Br. J. Cancer72: 952–957 CASPubMedPubMed Central Google Scholar
Lassus P, Bertrand C, Zugasti O, Chambon JP, Soussi T, Mathieu-Mahul D and Hibner U (1999) Antiapoptotic activity of p53 maps to the COOH-terminal domain and is retained in a highly oncogenic natural mutant. Oncogene18: 4699–4709 CASPubMed Google Scholar
McKay BC, Becerril C and Ljungman M (2001) P53 plays a protective role against UV- and cisplatin-induced apoptosis in transcription-coupled repair proficient fibroblasts. Oncogene20: 6805–6808 CASPubMed Google Scholar
Gorospe M, Cirielli C, Wang XT, Seth P, Capogrossi MC and Holbrook NJ (1997) p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene14: 929–935 CASPubMed Google Scholar
Bissonnette N and Hunting DJ (1998) p21-induced cycle arrest in G1 protects cells from apoptosis induced by UV-irradiation or RNA polymerase II blockage. Oncogene16: 3461–3469 CASPubMed Google Scholar
Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW and Vogelstein B (1998) Requirement for p53 and p21 to Sustain G2 arrest after DNA damage. Science282: 1497–1501 CASPubMed Google Scholar
Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW and Vogelstein B (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest.104: 263–269 CASPubMedPubMed Central Google Scholar
Mariette X, Sibilia J, Roux S, Meignin V and Janin A (2002) A new defensive mechanism to prevent apoptosis in salivary ductal cells from patients with Sjogren's syndrome: over-expression of p53 and p21. Rheumatology (Oxford) 41: 96–99 Google Scholar
Polyak K, Waldman T, He TC, Kinzler KW and Vogelstein B (1996) Genetic determinants of p53-induced apoptosis and growth arrest. Gene Develop.10: 1945–1952 CAS Google Scholar
Wang Y, Blandino G and Givol D (1999) Induced p21waf expression in H1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene18: 2643–2649 CASPubMed Google Scholar
Roninson IB (2002) Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett.179: 1–14 CASPubMed Google Scholar
Shaulian E, Schreiber M, Piu F, Beeche M, Wagner EF and Karin M (2000) The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell103: 897–907 CASPubMed Google Scholar
Li Y, Dowbenko D and Lasky LA (2002) AKT/PKB phosphorylation of p21Cip1/WAF1 enhances protein stability of p21Cip1/WAF1 and promotes cell survival. J. Biol. Chem.277:11352–11361 CASPubMed Google Scholar
Rossig L, Badorff C, Holzmann Y, Zeiher AM and Dimmeler S (2002) Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. J. Biol. Chem.277: 9684–9689 CASPubMed Google Scholar
Meng RD, McDonald III ER, Sheikh MS, Fornace Jr AJ and El-Deiry WS (2000) The TRAIL decoy receptor TRUNDD (DcR2, TRAIL-R4) is induced by adenovirus-p53 overexpression and can delay TRAIL-, p53-, and KILLER/DR5-dependent colon cancer apoptosis. Mol. Ther.1: 130–144 CASPubMed Google Scholar
Fang L, Li G, Liu G, Lee SW and Aaronson SA (2001) p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO J.20: 1931–1939 CASPubMedPubMed Central Google Scholar
Peifer M and Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis -- a look outside the nucleus. Science287: 1606–1609 CASPubMed Google Scholar
Brantjes H, Barker N, van EJ and Clevers H (2002) TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol. Chem.383: 255–261 CASPubMed Google Scholar
Damalas A, Ben-Ze'ev A, Simcha I, Shtutman M, Leal JF, Zhurinsky J, Geiger B and Oren M (1999) Excess beta-catenin promotes accumulation of transcriptionally active p53. EMBO J.18: 3054–3063 CASPubMedPubMed Central Google Scholar
Lowe SW (1999) Activation of p53 by oncogenes. Endocr. Relat. Cancer6: 45–48 CASPubMed Google Scholar
Sherr CJ and Weber JD (2000) The ARF/p53 pathway. Curr. Opin. Genet. Dev.10: 94–99 CASPubMed Google Scholar
Russell JL, Powers JT, Rounbehler RJ, Rogers PM, Conti CJ and Johnson DG (2002) ARF differentially modulates apoptosis induced by E2F1 and Myc. Mol. Cell Biol.22: 1360–1368 CASPubMedPubMed Central Google Scholar
Damalas A, Kahan S, Shtutman M, Ben-Ze'ev A and Oren M (2001) Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J.20: 4912–4922 CASPubMedPubMed Central Google Scholar
Esteller M, Tortola S, Toyota M, Capella G, Peinado MA, Baylin SB and Herman JG (2000) Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res.60: 129–133 CASPubMed Google Scholar
Tolbert D, Lu X, Yin C, Tantama M and Van Dyke T (2002) p19(ARF) is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumor suppression in vivo. Mol. Cell Biol.22: 370–377 CASPubMedPubMed Central Google Scholar
Su F, Overholtzer M, Besser D and Levine AJ (2002) WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Genes Dev.16: 46–57 CASPubMedPubMed Central Google Scholar
Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL, White RL and Matsunami N (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell7: 927–936 CASPubMed Google Scholar
Matsuzawa SI and Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol. Cell7: 915–926 CASPubMed Google Scholar
Sadot E, Geiger B, Oren M and Ben-Ze'ev A (2001) Downregulation of beta-catenin by activated p53. Mol. Cell Biol.21: 6768–6781 CASPubMedPubMed Central Google Scholar
Yang A, Kaghad M, Caput D and McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet.18: 90–95 PubMed Google Scholar
Patturajan M, Nomoto S, Sommer M, Fomenkov A, Hibi K, Zangen R, Poliak N, Califano J, Trink B, Ratovitski E and Sidransky D (2002) DeltaNp63 induces beta-catenin nuclear accumulation and signaling. Cancer Cell1: 369–379 CASPubMed Google Scholar
Nicholson KM and Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal.14: 381–395 CASPubMed Google Scholar
Brazil DP and Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Bio. Chem. Sci.26: 657–664 CAS Google Scholar
Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ and Vousden KH (2002) Phosphorylation of HDM2 by Akt. Oncogene21: 1955–1962 CASPubMed Google Scholar
Gottlieb TM, Leal JF, Seger R, Taya Y and Oren M . (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene21: 1299–1303 CASPubMed Google Scholar
Mayo LD and Donner DB (2001) A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl. Acad. Sci. USA98: 11598–11603 CASPubMedPubMed Central Google Scholar
Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N and Gotoh Y (2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J. Biol. Chem.277: 21843–21850 CASPubMed Google Scholar
Zhou BP, Liao Y, Xia W, Zou Y, Spohn B and Hung MC (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat. Cell Biol.3: 973–982 CASPubMed Google Scholar
Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S and, Mak TW (2001) Regulation of PTEN Transcription by p53. Mol. Cell8: 317–325 CASPubMed Google Scholar
Singh B, Reddy PG, Goberdhan A, Walsh C, Dao S, Ngai I, Chou TC, Levine AJ, Rao PH and Stoffel A (2002) p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev.16: 984–893 CASPubMedPubMed Central Google Scholar
Weston CR and Davis RJ (2001) Signal transduction: signaling specificity – a complex affair. Science292: 2439–2440 CASPubMed Google Scholar
Watcharasit P, Bijur GN, Zmijewski JW, Song L, Zmijewska A, Chen X, Johnson GV and Jope RS (2002) Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc. Natl. Acad. Sci. USA99: 7951–7955 CASPubMedPubMed Central Google Scholar
Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C and Capeau J (2001) Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene20: 252–259 CASPubMed Google Scholar
Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH, Matsui T, Rosenzweig A, Taylor WG, Rubin JS, Perrella MA and Lee ME (2001) Akt participation in the Wnt signaling pathway through Dishevelled. J. Biol. Chem.276: 17479–17483 CASPubMed Google Scholar
Monick MM, Carter AB, Robeff PK, Flaherty DM, Peterson MW and Hunninghake GW (2001) Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of beta-catenin. J. Immunol.166: 4713–4720 CASPubMed Google Scholar
Satyamoorthy K, Li G, Vaidya B, Patel D and Herlyn M (2001) Insulin-like growth factor-1 induces survival and growth of biologically early melanoma cells through both the mitogen-activated protein kinase and beta-catenin pathways. Cancer Res.61: 7318–7324 CASPubMed Google Scholar
Persad S, Troussard AA, McPhee TR, Mulholland DJ and Dedhar S (2001) Tumor-suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J. Cell Biol.153: 1161–1174 CASPubMedPubMed Central Google Scholar
Sharma M, Chuang WW and Sun Z (2002) Phosphatidylinosital 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta -catenin accumulation. J. Biol. Chem.277: 30935–30941 CASPubMed Google Scholar
Pap M and Cooper GM (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J. Biol. Chem.273: 19929–19932 CASPubMed Google Scholar
Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM and Lowe SW (2002) Dissecting p53 tumor-suppressor functions in vivo. Cancer Cell1: 289–298 CASPubMed Google Scholar
Symonds H, Krall L, Remington L, Saenzrobles M, Lowe S, Jacks T and Vandyke T (1994) p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell78: 703–711 CASPubMed Google Scholar
Fazeli A, Steen RG, Dickinson SL, Bautista D, Dietrich WF, Bronson RT, Bresalier RS, Lander ES, Costa J and Weinberg RA (1997) Effects of p53 mutations on apoptosis in mouse intestinal and human colonic adenomas. Proc. Natl. Acad. Sci. USA94: 10199–10204 CASPubMedPubMed Central Google Scholar