Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children (original) (raw)

References

  1. James PT, Rigby N, Leach R . International Obesity Task Force. The obesity epidemic, metabolic syndrome and future prevention strategies. Eur J Cardiovasc Prev Rehabil 2004; 11: 3–8.
    Article Google Scholar
  2. Lobstein T, Frelut ML . Prevalence of overweight among children in Europe. Obes Rev 2003; 4: 195–200.
    Article CAS Google Scholar
  3. Yoshinaga M, Shimago A, Koriyama C, Nomura Y, Miyata K, Hashiguchi J et al. Rapid increase in the prevalence of obesity in elementary school children. Int J Obes Relat Metab Disord 2004; 28: 494–499.
    Article CAS Google Scholar
  4. Ogden CL, Flegal KM, Carroll MD, Johnson CL . Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA 2002; 288: 1728–1732.
    Article Google Scholar
  5. Ebbeling CB, Pawlak DB, Ludwig DS . Childhood obesity: public-health crisis, common sense cure. Lancet 2002; 360: 473–482.
    Article Google Scholar
  6. Larsson B, Svardsudd K, Welin L, Wilhelmsen L, Bjorntorp P, Tibblin G . Abdominal adipose tissue distribution, obesity and risk for cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. BMJ 1984; 288: 1401–1404.
    Article CAS Google Scholar
  7. Caprio S, Hyman LD, McCarthy S, Lange R, Bronson M, Tamborlane WV . Fat distribution and cardiovascular risk factors in obese adolescent girls: importance of the intraabdominal fat depot. Am J Clin Nutr 1996; 64: 12–17.
    Article CAS Google Scholar
  8. Zhu SK, Wang Z, Heshka S, Heo M, Faith MS, Heymsfield SB . Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. Am J Clin Nutr 2002; 76: 743–749.
    Article CAS Google Scholar
  9. Katzmarzyk PT, Srinivasan SR, Chen W, Malina RM, Bouchard C, Berenson GS . Body mass index, waist circumference and clustering of cardiovascular disease risk factors in a biracial sample of children and adolescents. Pediatrics 2004; 114: 198–204.
    Article Google Scholar
  10. Ardern CI, Janssen I, Ross R, Katzmarzyk PT . Development of health-related waist circumference thresholds within BMI categories. Obes Res 2004; 12: 1094–1103.
    Article Google Scholar
  11. de Ridder CM, de Boer RW, Seidell JC, Nieuwenhoff CM, Janeson JAL, Bakker CJG et al. Body fat distribution in pubertal girls quantified by magnetic resonance imaging. Int J Obes 1992; 16: 443–449.
    CAS Google Scholar
  12. Fox KR, Peters DM, Armstrong N, Sharpe P, Bell M . Abdominal fat deposition in 11-year-old children. Int J Obes 1993; 17: 11–16.
    CAS Google Scholar
  13. Brambilla P, Manzoni P, Sironi S, Simone P, Del Maschio A, di Natale B et al. Peripheral and abdominal adiposity in childhood obesity. Int J Obes 1994; 18: 795–800.
    CAS Google Scholar
  14. Caprio S, Hyman LD, Limb C, McCarthy S, Lange R, Sherwin RS et al. Central adiposity and its metabolic correlates in obese adolescent girls. Am J Physiol 1995; 269: E118–E126.
    Article CAS Google Scholar
  15. Brambilla P, Manzoni P, Agostini G, Beccaria L, Ruotolo G, Sironi S et al. Persisting obesity starting before puberty is associated with stable intraabdominal fat during adolescence. Int J Obes Relat Metab Disord 1999; 23: 299–303.
    Article CAS Google Scholar
  16. Gower BA, Nagy TR, Goran MI . Visceral fat, insulin sensitivity and lipids in prepubertal children. Diabetes 1999; 48: 1515–1521.
    Article CAS Google Scholar
  17. Owens S, Gutin B, Barbeau P, Litaker M, Allison J, Humphries M et al. Visceral adiposity tissue and markers of the insulin resistance syndrome in obese black and white teenagers. Obes Res 2000; 8: 287–293.
    Article CAS Google Scholar
  18. Fox KR, Peters DM, Sharpe P, Bell M . Assessment of abdominal fat development in young adolescents using magnetic resonance imaging. Int J Obes Relat Metab Disord 2000; 24: 1653–1659.
    Article CAS Google Scholar
  19. He Q, Horlick M, Fedun B, Wang J, Pierson RN, Heshka S et al. Trunk fat and blood pressure in children through puberty. Circulation 2002; 105: 1093–1098.
    Article Google Scholar
  20. Tershakovec AM, Kuppler KM, Zemel BS, Kats L, Weinzimer S, Harty MP et al. Body composition and metabolic factors in obese children and adolescents. Int J Obes Relat Metab Disord 2003; 27: 19–24.
    Article CAS Google Scholar
  21. van der Kooy K, Seidell JC . Techniques for the measurement of visceral fat: a practical guide. Int J Obes 1993; 17: 187–196.
    CAS Google Scholar
  22. Janssen I, Heymsfield SB, Allison DB, Kotler DP, Ross R . Body mass index and waist circumference independently contribute to the prediction of nonabdominal, abdominal subcutaneous and visceral fat. Am J Clin Nutr 2002; 75: 683–688.
    Article CAS Google Scholar
  23. Goran MI . Visceral fat in prepubertal children: influence of obesity, anthropometry, ethnicity, gender, diet and growth. Am J Hum Biol 1999; 11: 201–207.
    Article Google Scholar
  24. Lazarus R, Baur L, Webb K, Blyth F . Body mass index in screening for adiposity in children and adolescents: systematic evaluation using receiver operating characteristic curves. Am J Clin Nutr 1996; 63: 500–506.
    Article CAS Google Scholar
  25. Freedman DS, Serdula MK, Srinivasan SR, Berenson GS . Relation of circumferences and skinfold thicknesses to lipid and insulin concentrations in children and adolescents: the Bogalusa Heart Study. Am J Clin Nutr 1999; 69: 308–317.
    Article CAS Google Scholar
  26. Maffeis C, Pietrobelli A, Grezzani A, Provera S, Tato L . Waist circumference and cardiovascular risk factors in prepubertal children. Obes Res 2001; 9: 179–187.
    Article CAS Google Scholar
  27. Moreno LA, Pineda I, Rodriguez G, Fleta J, Sarria A, Bueno M . Waist circumference for the screening of the metabolic syndrome in children. Acta Pediatr 2002; 91: 1307–1312.
    Article CAS Google Scholar
  28. Bedogni G, Iughetti L, Ferrari M, Malavolti M, Poli M, Bernasconi S et al. Sensitivity and specificity of body mass index and skinfold thicknesses in detecting excess adiposity in children aged 8–12 years. Ann Hum Biol 2003; 30: 132–139.
    Article CAS Google Scholar
  29. De Simone M, Verrotti A, Iughetti L, Palumbo M, Farello G, Di Cesare E et al. Increased visceral adipose tissue is associated with increased circulating insulin and decreased sex hormone binding globulin levels in massively obese adolescent girls. J Endocrinol Invest 2001; 24: 438–444.
    Article CAS Google Scholar
  30. Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab 2003; 88: 5163–5168.
    Article CAS Google Scholar
  31. Lohman TG, Roche F, Martorell R (eds). Anthropometric Standardization Reference Manual. Human Kinetics: Champaign, IL, USA, 1988.
    Google Scholar
  32. Tanner JM, Whitehouse RH . Clinical longitudinal standards for height, weight, height velocity, weight velocity and stages of puberty. Arch Dis Child 1976; 51: 170–179.
    Article CAS Google Scholar
  33. Guo SS, Chumlea WC . Statistical methods for the development and testing of predictive equations. In: Roche AF, Heymsfield SB, Lohman TG (eds). Human Body Composition. Human Kinetics: Champaign, IL, USA, 1996, pp 191–202.
    Google Scholar
  34. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH . Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320: 1240–1243.
    Article CAS Google Scholar
  35. Sopher A, Shen W, Pietrobelli A . Pediatric body composition. In: Heymsfield SB, Lohman TG, Wang ZM, Going S (eds). Human Body Composition. Human Kinetics: Champaign, IL, USA, 2005; 129–140.
    Google Scholar
  36. Conway JM, Yanovski SZ, Avila NA, Hubbard VS . Visceral adipose tissue differences in black and white women. Am J Clin Nutr 1995; 61: 765–771.
    Article CAS Google Scholar
  37. Okosun IS, Liao Y, Rotimi CN, Prewitt TE, Cooper RS . Abdominal adiposity and clustering of multiple metabolic syndrome in White, Black and Hispanic Americans. Ann Epidemiol 2000; 10: 263–270.
    Article CAS Google Scholar
  38. Goran MI, Gower BA . Relation between visceral fat and disease risk in children and adolescents. Am J Clin Nutr 1999; 70: 149S–156S.
    Article CAS Google Scholar
  39. Yanovski JA, Yanovski SZ, Filmer KM, Hubbard VS, Avila N, Lewis B, et al. Differences in body composition of black and white girls. Am J Clin Nutr 1996; 64: 833–839.
    Article CAS Google Scholar
  40. Gutin B, Islam S, Manos T, Cucuzzo N, Smith C, Stachura ME . Relation of percentage of body fat and maximal aerobic capacity to risk factors for atherosclerosis and diabetes in black and white seven-to-eleven-year-old children. J Pediatr 1994; 125: 847–852.
    Article CAS Google Scholar
  41. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004; 350: 2362–2374.
    Article CAS Google Scholar
  42. Enzi G, Gasparo M, Biondetti PR, Fiore D, Semisa M, Zurlo F . Subcutaneous and visceral fat distribution according to sex, age and overweight, evaluated by computed tomography. Am J Clin Nutr 1986; 44: 739–746.
    Article CAS Google Scholar
  43. Seidell JC, Oosterlee A, Deurenberg P, Hautvast JGAJ, Ruijs JHJ . Abdominal fat depots measured with computed tomography: effects of degree of obesity, sex and age. Eur J Clin Nutr 1988; 42: 805–815.
    CAS Google Scholar
  44. Rolland-Cachera MF . Body composition during adolescence: methods, limitations and determinants. Horm Res 1993; 39 (Suppl 3): 25–40.
    Article Google Scholar
  45. Huang TT, Johnson MS, Figueroa-Colon R, Dwyer JH, Goran MI . Growth of visceral fat, subcutaneous abdominal fat and total body fat in children. Obes Res 2001; 9: 283–289.
    Article CAS Google Scholar
  46. He Q, Horlick M, Thornton J, Wang J, Pierson Jr RN, Heshka S et al. Sex-specific fat distribution is not linear across pubertal groups in a multiethnic study. Obes Res 2004; 12: 725–733.
    Article Google Scholar
  47. Kaplowitz PB, Oberfield SE, the Drug and Therapeutics Executive Committees of the Lawson Wilkins Pediatric Endocrine Society. Reexamination of the age limit for the defining when puberty is precocious in girls in the United States: implication for evaluation and treatment. Pediatrics 1999; 104: 936–941.
    Article CAS Google Scholar
  48. Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS . Relation of age at menarche to race, time period and anthropometric dimensions: the Bogalusa Heart Study. Pediatrics 2002; 110: e43.
    Article Google Scholar
  49. Sus SS, Schubert CM, Chumlea WC, Roche AF, Kulin HE, Lee PA et al. National estimates of the timing of sexual maturation and racial differencies among US children. Pediatrics 2002; 110: 911–919.
    Article Google Scholar

Download references