Minimal residual disease detection in childhood precursor–B-cell acute lymphoblastic leukemia: relation to other risk factors. A Children's Oncology Group study (original) (raw)
Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000; 96: 2691–2696. CAS Google Scholar
Campana D, Neale GA, Coustan-Smith E, Pui CH . Detection of minimal residual disease in acute lymphoblastic leukemia: the St Jude experience. Leukemia 2001; 15: 278–279. ArticleCAS Google Scholar
zur Stadt U, Harms DO, Schluter S, Schrappe M, Goebel U, Spaar H et al. MRD at the end of induction therapy in childhood acute lymphoblastic leukemia: outcome prediction strongly depends on the therapeutic regimen. Leukemia 2001; 15: 283–285. ArticleCAS Google Scholar
Malec M, Bjorklund E, Soderhall S, Mazur J, Sjogren AM, Pisa P et al. Flow cytometry and allele-specific oligonucleotide PCR are equally effective in detection of minimal residual disease in ALL. Leukemia 2001; 15: 716–727. ArticleCAS Google Scholar
Eckert C, Biondi A, Seeger K, Cazzaniga G, Hartmann R, Beyermann B et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet 2001; 358: 1239–1241. ArticleCAS Google Scholar
Nyvold C, Madsen HO, Ryder LP, Seyfarth J, Svejgaard A, Clausen N et al. Precise quantification of minimal residual disease at day 29 allows identification of children with acute lympho-blastic leukemia and an excellent outcome. Blood 2002; 99: 1253–1258. ArticleCAS Google Scholar
Mortuza FY, Papaioannou M, Moreira IM, Coyle LA, Gameiro P, Gandini D et al. Minimal residual disease tests provide an independent predictor of clinical outcome in adult acute lymphoblastic leukemia. J Clin Oncol 2002; 20: 1094–1104. Article Google Scholar
Sanchez J, Serrano J, Gomez P, Martinez F, Martin C, Madero L et al. Clinical value of immunological monitoring of minimal residual disease in acute lymphoblastic leukaemia after allogeneic transplantation. Br J Haematol 2002; 116: 686–694. Article Google Scholar
Dworzak MN, Froschl G, Printz D, Mann G, Potschger U, Muhlegger N et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002; 99: 1952–1958. ArticleCAS Google Scholar
Orfao A, Ciudad J, Lopez-Berges MC, Lopez A, Vidriales B, Caballero MD et al. Acute lymphoblastic leukemia (ALL): detection of minimal residual disease (MRD) at flow cytometry. Leukemia Lymphoma 1994; 13(Suppl 1): 87–90. Article Google Scholar
Campana D, Coustan-Smith E . The use of flow cytometry to detect minimal residual disease in acute leukemia. (Review) (19 references). Eur J Histochem 1996; 40(Suppl 1): 39–42. PubMed Google Scholar
Bjorklund E, Mazur J, Soderhall S, Porwit-MacDonald A . Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia. Leukemia, 2003; 17: 138–148.
Cave H, van der Werff ten B, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med 1998; 339: 591–598. ArticleCAS Google Scholar
van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738. ArticleCAS Google Scholar
San Miguel JF, Ciudad J, Vidriales MB, Orfao A, Lucio P, Porwit-MacDonald A et al. Immunophenotypical detection of minimal residual disease in acute leukemia. Crit Rev Oncol Hematol 1999; 32: 175–185. ArticleCAS Google Scholar
Brisco MJ, Condon J, Hughes E, Neoh SH, Sykes PJ, Seshadri R et al. Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet 1994; 343: 196–200. ArticleCAS Google Scholar
Guidal C, Vilmer E, Grandchamp B, Cave H . A competitive PCR-based method using TCRD, TCRG and IGH rearrangements for rapid detection of patients with high levels of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2002; 16: 762–764. ArticleCAS Google Scholar
Van Der Velden V, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJ . T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380. ArticleCAS Google Scholar
Wright JJ, Poplack DG, Bakhshi A, Reaman G, Cole D, Jensen JP et al. Gene rearrangements as markers of clonal variation and minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 1987; 5: 735–741. ArticleCAS Google Scholar
Brisco MJ, Sykes PJ, Hughes E, Story CJ, Rice MS, Schwarer AP et al. Molecular relapse can be detected in blood in a sensitive and timely fashion in B-lineage acute lymphoblastic leukemia. Leukemia 2001; 15: 1801–1802. ArticleCAS Google Scholar
Krampera M, Perbellini O, Maggioni A, Scognamiglio F, Todeschini G, Pizzolo G . Flow-cytometric detection of minimal residual disease in adult acute lymphoblastic leukemia. Haematologica 2001; 86: 322–323. CASPubMed Google Scholar
Lucio P, Gaipa G, van Lochem EG, van Wering ER, Porwit-MacDonald A, Faria T et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia 2001; 15: 1185–1192. ArticleCAS Google Scholar
Farahat N, Lens D, Zomas A, Morilla R, Matutes E, Catovsky D . Quantitative flow cytometry can distinguish between normal and leukaemic B-cell precursors. Br J Haematol 1995; 91: 640–646. ArticleCAS Google Scholar
Campana D, Pui C-H . Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 1995; 85: 1416–1434. CAS Google Scholar
Brisco MJ, Condon J, Sykes PJ, Neoh SH, Morley AA . Detection and quantitation of neoplastic cells in acute lymphoblastic leukaemia, by use of the polymerase chain reaction. Br J Haematol 1991; 79: 211–217. ArticleCAS Google Scholar
Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998; 351: 550–554. ArticleCAS Google Scholar
Weir EG, Cowan K, LeBeau P, Borowitz MJ . A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Leukemia 1999; 13: 558–567. ArticleCAS Google Scholar
Babusikova O, Glasova M, Konikova E, Kusenda J . Leukemia-associated phenotypes: their characteristics and incidence in acute leukemia. Neoplasma 1996; 43: 367–372. CASPubMed Google Scholar
Campana D, Coustan-Smith E, Janossy G . The immunologic detection of minimal residual disease in acute leukemia. Blood 1990; 76: 163–171. CASPubMed Google Scholar
Coustan-Smith E, Sancho J, Behm FG, Hancock ML, Razzouk BI, Ribeiro RC et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002; 100: 52–58. ArticleCAS Google Scholar
Biondi A, Valsecchi MG, Seriu T, d'Aniello E, Willemse MJ, Fasching K et al. Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group. Leukemia 2000; 14: 1939–1943. ArticleCAS Google Scholar
Van der Velden VH, Joosten SA, Willemse MJ, van Wering ER, Lankester AW, van Dongen JJ et al. Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia 2001; 15: 1485–1487. ArticleCAS Google Scholar
Schrappe M, Arico M, Harbott J, Biondi A, Zimmermann M, Conter V et al. Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome. Blood 1998; 92: 2730–2741. CAS Google Scholar
Dordelmann M, Reiter A, Borkhardt A, Ludwig WD, Gotz N, Viehmann S et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999; 94: 1209–1217. CAS Google Scholar
Gaynon PS, Desai AA, Bostrom BC, Hutchinson RJ, Lange BJ, Nachman JB et al. Early response to therapy and outcome in childhood acute lymphoblastic leukemia: a review. Cancer 1997; 80: 1717–1726. ArticleCAS Google Scholar
Steinherz PG, Gaynon PS, Breneman JC, Cherlow JM, Grossman NJ, Kersey JH et al. Cytoreduction and prognosis in acute lymphoblastic leukemia--the importance of early marrow response: report from the Childrens Cancer Group. J Clin Oncol 1996; 14: 389–398. ArticleCAS Google Scholar
Shurtleff SA, Buijs A, Behm FG, Rubnitz JE, Raimondi SC, Hancock ML et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia 1995; 9: 1985–1989. CAS Google Scholar
Harris MB, Shuster JJ, Carroll A, Look AT, Borowitz MJ, Crist WM et al. Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study. Blood 1992; 79: 3316–3324. CAS Google Scholar
Pui C-H, Frankel LS, Carroll AJ, Raimondi SC, Shuster JJ, Head DR et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases. Blood 1991; 77: 440–447. CAS Google Scholar
Pui C-H, Crist WM, Look AT . Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood 1990; 76: 449–1463. Google Scholar
Crist WM, Carroll AJ, Shuster JJ, Behm FG, Whitehead M, Vietti TJ et al. Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a pediatric oncology group study. Blood 1990; 76: 117–122. CAS Google Scholar
Shuster J, Camitta B, Borowitz MJ, Carroll AJ, Look AT et al. Identification of newly diagnosed children with acute lymphocytic leukemia at high risk for relapse. Cancer Res Ther Control 1999; 9: 101–107. Google Scholar
Schmiegelow K, Nyvold C, Seyfarth J, Pieters R, Rottier MM, Knabe N et al. Post-induction residual leukemia in childhood acute lymphoblastic leukemia quantified by PCR correlates with in vitro prednisolone resistance. Leukemia 2001; 15: 1066–1071. ArticleCAS Google Scholar
Nachman J, Sather HN, Gaynon PS, Lukens JN, Wolff L, Trigg ME . Augmented Berlin–Frankfurt–Munster therapy abrogates the adverse prognostic significance of slow early response to induction chemotherapy for children and adolescents with acute lymphoblastic leukemia and unfavorable presenting features: a report from the Children's Cancer Group. J Clin Oncol 1997; 15: 2222–2230. ArticleCAS Google Scholar
Rubnitz JE, Downing JR, Pui CH, Shurtleff SA, Raimondi SC, Evans WE et al. TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol 1997; 15: 1150–1157. ArticleCAS Google Scholar
Uckun FM, Pallisgaard N, Hokland P, Navara C, Narla R, Gaynon PS et al. Expression of TEL-AML1 fusion transcripts and response to induction therapy in standard risk acute lymphoblastic leukemia. Leukemia Lymphoma 2001; 42: 41–56. ArticleCAS Google Scholar
Chow CD, Dalla-Pozza L, Gottlieb DJ, Hertzberg MS . Two cases of very late relapsing ALL carrying the TEL:AML1 fusion gene. Leukemia 1999; 13: 1893–1894. ArticleCAS Google Scholar
Takahashi Y, Horibe K, Kiyoi H, Miyashita Y, Fukuda M, Mori H et al. Prognostic significance of TEL/AML1 fusion transcript in childhood B-precursor acute lymphoblastic leukemia. J Pediatr Hematol Oncol 1998; 20: 190–195. ArticleCAS Google Scholar
Seeger K, Adams HP, Buchwald D, Beyermann B, Kremens B, Niemeyer C et al. TEL-AML1 fusion transcript in relapsed childhood acute lymphoblastic leukemia. The Berlin-Frankfurt-Munster Study Group. Blood 1998; 91: 1716–1722. CAS Google Scholar
Willemse MJ, Seriu T, Hettinger K, d'Aniello E, Hop WC, Panzer-Grumayer ER et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 2002; 99: 4386–4393. ArticleCAS Google Scholar
Brisco MJ, Sykes PJ, Hughes E, Dolman G, Neoh SH, Peng LM et al. Monitoring minimal residual disease in peripheral blood in B-lineage acute lymphoblastic leukaemia. Br J Haematol 1997; 99: 314–319. ArticleCAS Google Scholar
Van der Velden VV, Jacobs DC, Wijkhuijs AJ, Comans-Bitter WM, Willemse MJ, Hahlen K et al. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 2002; 16: 1432–1436. ArticleCAS Google Scholar
Coustan-Smith E, Sancho J, Hancock ML, Razzouk BI, Ribeiro RC, Rivera GK et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 2002; 100: 2399–2402. ArticleCAS Google Scholar