Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL (original) (raw)
Szczepański T, Orfao A, van der Velden VHJ, San Miguel JF, van Dongen JJM . Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2: 409–417. ArticlePubMed Google Scholar
Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. N Engl J Med 1998; 339: 591–598. ArticleCASPubMed Google Scholar
Van Dongen JJM, Seriu T, Panzer-Grümayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738. ArticleCASPubMed Google Scholar
Coustan-Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000; 96: 2691–2696. CASPubMed Google Scholar
Nyvold C, Madsen HO, Ryder LP, Seyfarth J, Svejgaard A, Clausen N et al. Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood 2002; 99: 1253–1258. ArticleCASPubMed Google Scholar
Willemse MJ, Seriu T, Hettinger K, d’Aniello E, Hop WCJ, Panzer-Grümayer ER et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor-B-ALL. Blood 2002; 99: 4386–4393. ArticleCASPubMed Google Scholar
Pui CH, Campana D . New definition of remission in childhood acute lymphoblastic leukemia. Leukemia 2000; 14: 783–785. ArticleCASPubMed Google Scholar
Szczepański T, Flohr T, van der Velden VHJ, Bartram CR, van Dongen JJM . Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2002; 15: 37–57. ArticlePubMed Google Scholar
Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized MRD detection in ALL using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118. ArticleCASPubMed Google Scholar
Verhagen OJHM, Willemse MJ, Breunis WB, Wijkhuijs AJM, Jacobs DCH, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435. ArticleCASPubMed Google Scholar
Brüggemann M, Droese J, Bolz I, Luth P, Pott C, von Neuhoff N et al. Improved assessment of minimal residual disease in B cell malignancies using fluorogenic consensus probes for real-time quantitative PCR. Leukemia 2000; 14: 1419–1425. ArticlePubMed Google Scholar
Donovan JW, Ladetto M, Zou G, Neuberg D, Poor C, Bowers D et al. Immunoglobulin heavy-chain consensus probes for real-time PCR quantification of residual disease in acute lymphoblastic leukemia. Blood 2000; 95: 2651–2658. CASPubMed Google Scholar
Van der Velden VHJ, Willemse MJ, van der Schoot CE, van Wering ER, van Dongen JJM . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936. ArticleCASPubMed Google Scholar
Van der Velden VHJ, Wijkhuijs JM, Jacobs DCH, van Wering ER, van Dongen JJM . T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380. ArticleCASPubMed Google Scholar
Van der Velden VHJ, Jacobs DCH, Wijkhuijs AJM, Comans-Bitter WM, Willemse MJ, Hählen K et al. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 2002; 16: 1432–1436. ArticleCASPubMed Google Scholar
Szczepański T, Pongers-Willemse MJ, Langerak AW, van Dongen JJM . Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias. Curr Top Microbiol Immunol 1999; 246: 205–215. PubMed Google Scholar
De Haas V, Verhagen OJ, von dem Borne AE, Kroes W, van den Berg H, van der Schoot CE . Quantification of minimal residual disease in children with oligoclonal B-precursor acute lymphoblastic leukemia indicates that the clones that grow out during relapse already have the slowest rate of reduction during induction therapy. Leukemia 2001; 15: 134–140. ArticleCASPubMed Google Scholar
Szczepański T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJM . Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002; 99: 2315–2323. ArticlePubMed Google Scholar
Beishuizen A, Verhoeven MA, van Wering ER, Hählen K, Hooijkaas H, van Dongen JJM . Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 1994; 83: 2238–2247. CASPubMed Google Scholar
Taylor JJ, Rowe D, Kylefjord H, Chessells J, Katz F, Proctor SJ et al. Characterisation of non-concordance in the T-cell receptor gamma chain genes at presentation and clinical relapse in acute lymphoblastic leukemia. Leukemia 1994; 8: 60–66. CASPubMed Google Scholar
Baruchel A, Cayuela JM, MacIntyre E, Berger R, Sigaux F . Assessment of clonal evolution at Ig/TCR loci in acute lymphoblastic leukaemia by single-strand conformation polymorphism studies and highly resolutive PCR derived methods: implication for a general strategy of minimal residual disease detection. Br J Haematol 1995; 90: 85–93. ArticleCASPubMed Google Scholar
LoNigro L, Cazzaniga G, DiCataldo A, Pannunzio A, DAniello E, Masera G et al. Clonal stability in children with acute lymphoblastic leukemia (ALL) who relapsed five or more years after diagnosis. Leukemia 1999; 13: 190–195. ArticleCAS Google Scholar
Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458. ArticleCASPubMed Google Scholar
Van Dongen JJM, Adriaansen HJ, Hooijkaas H . Immunophenotyping of leukaemias and non-Hodgkin's lymphomas. Immunological markers and their CD codes. Neth J Med 1988; 33: 298–314. CASPubMed Google Scholar
Szczepański T, Willemse MJ, Kamps WA, van Wering ER, Langerak AW, van Dongen JJM . Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia – proposal for an easy strategy. Med Pediatr Oncol 2001; 36: 352–358. ArticlePubMed Google Scholar
Van Dongen JJM, Wolvers-Tettero ILM . Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta 1991; 198: 1–91. ArticleCASPubMed Google Scholar
Langerak AW, Wolvers-Tettero ILM, van Dongen JJM . Detection of T cell receptor beta (TCRB) gene rearrangement patterns in T cell malignancies by Southern blot analysis. Leukemia 1999; 13: 965–974. ArticleCASPubMed Google Scholar
Breit TM, Wolvers-Tettero ILM, Beishuizen A, Verhoeven M-AJ, van Wering ER, van Dongen JJM . Southern blot patterns, frequencies and junctional diversity of T-cell receptor δ gene rearrangements in acute lymphoblastic leukemia. Blood 1993; 82: 3063–3074. CASPubMed Google Scholar
Quertermous T, Strauss WM, Van Dongen JJM, Seidman JG . Human T cell gamma chain joining regions and T cell development. J Immunol 1987; 138: 2687–2690. CASPubMed Google Scholar
Moreau EJ, Langerak AW, van Gastel-Mol EJ, Wolvers-Tettero ILM, Zhan M, Zhou Q et al. Easy detection of all T cell receptor gamma (TCRG) gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia 1999; 13: 1620–1626. ArticleCASPubMed Google Scholar
Szczepański T, Langerak AW, Willemse MJ, Wolvers-Tettero ILM, van Wering ER, van Dongen JJM . T cell receptor gamma (TCRG) gene rearrangements in T cell acute lymphoblastic leukemia reflect ‘end-stage’ recombinations: implications for minimal residual disease monitoring. Leukemia 2000; 14: 1208–1214. ArticlePubMed Google Scholar
Szczepański T, Langerak AW, Wolvers-Tettero ILM, Ossenkoppele GJ, Verhoef G, Stul M et al. Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease. Leukemia 1998; 12: 1081–1088. ArticlePubMed Google Scholar
Langerak AW, Szczepański T, van der Burg M, Wolvers-Tettero ILM, van Dongen JJM . Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia 1997; 11: 2192–2199. ArticleCASPubMed Google Scholar
Ghali DW, Panzer S, Fischer S, Argyriou-Tirita A, Haas OA, Kovar H et al. Heterogeneity of the T-cell receptor delta gene indicating subclone formation in acute precursor B-cell leukemias. Blood 1995; 85: 2795–2801. CASPubMed Google Scholar
Szczepański T, Pongers-Willemse MJ, Langerak AW, Harts WA, Wijkhuijs JM, van Wering ER et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V–D–J rearrangements, and are rare in T-cell receptor αβ lineage. Blood 1999; 93: 4079–4085. PubMed Google Scholar
Lefranc MP, Giudicelli V, Ginestoux C, Bodmer J, W Müller, Bontrop R et al. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 1999; 27: 209–212. ArticleCASPubMedPubMed Central Google Scholar
Breit TM, Van Dongen JJ . Unravelling human T-cell receptor junctional region sequences. Thymus 1994; 22: 177–199. CASPubMed Google Scholar
Pui CH, Behm FG, Singh B, Schell MJ, Williams DL, Rivera GK et al. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood 1990; 75: 174–179. CASPubMed Google Scholar
Hoelzer D, Gokbuget N, Ottmann O, Pui CH, Relling MV, Appelbaum FR et al. Acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2002; 162–192.
Kamps WA, Bokkerink JP, Hakvoort-Cammel FG, Veerman AJ, Weening RS, van Wering ER et al. BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991–1996). Leukemia 2002; 16: 1099–1111. ArticleCASPubMed Google Scholar
Amylon MD, Shuster J, Pullen J, Berard C, Link MP, Wharam M et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia 1999; 13: 335–342. ArticleCASPubMed Google Scholar
Hunger SP, Sklar J, Link MP . Acute lymphoblastic leukemia occurring as a second malignant neoplasm in childhood: report of three cases and review of the literature. J Clin Oncol 1992; 10: 156–163. ArticleCASPubMed Google Scholar
Liso V, Specchia G, Pannunzio A, Mestice A, Palumbo G, Biondi A . T-cell acute lymphoblastic leukemia occurring in a patient with acute promyelocytic leukemia. Haematologica 1998; 83: 471–473. CASPubMed Google Scholar
Kaplinsky C, Frisch A, Cohen IJ, Goshen Y, Jaber L, Yaniv I et al. T-cell acute lymphoblastic leukemia following therapy of rhabdomyosarcoma. Med Pediatr Oncol 1992; 20: 229–231. ArticleCASPubMed Google Scholar
Perotti D, Sozzi G, Ferrari A, Casanova M, Gambirasio F, Mondini P et al. Cytogenetic and molecular characterization of T-cell acute lymphoblastic leukemia as a second tumor after anaplastic large-cell lymphoma in a boy. Haematologica 1999; 84: 554–557. CASPubMed Google Scholar
Van Dongen JJM, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928. ArticleCASPubMed Google Scholar
Breit TM, Beishuizen A, Ludwig WD, Mol EJ, Adriaansen HJ, van Wering ER et al. tal-1 deletions in T-cell acute lymphoblastic leukemia as PCR target for detection of minimal residual disease. Leukemia 1993; 7: 2004–2011. CASPubMed Google Scholar
Bash RO, Crist WM, Shuster JJ, Link MP, Amylon M, Pullen J et al. Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to alterations at the TAL1 locus: a Pediatric Oncology Group study. Blood 1993; 81: 2110–2117. CASPubMed Google Scholar
Breit TM, Verschuren MCM, Wolvers-Tettero ILM, van Gastel-Mol EJ, Hählen K, van Dongen JJM . Human T cell leukemias with continuous V(D)J recombinase activity for TCR-delta gene deletion. J Immunol 1997; 159: 4341–4349. CASPubMed Google Scholar
Van Wering ER, van der Linden-Schrever BEM, van der Velden VHJ, Szczepański T, van Dongen JJM . T lymphocytes in bone marrow samples of children with acute lymphoblastic leukemia during and after chemotherapy might hamper PCR-based minimal residual disease studies. Leukemia 2001; 15: 1031–1033. Google Scholar
Van Dongen JJM, Quertermous T, Bartram CR, Gold DP, Wolvers-Tettero ILM, Comans-Bitter WM et al. T cell receptor-CD3 complex during early T cell differentiation. Analysis of immature T cell acute lymphoblastic leukemias (T-ALL) at DNA, RNA, and cell membrane level. J Immunol 1987; 138: 1260–1269. CASPubMed Google Scholar
Blom B, Verschuren MC, Heemskerk MH, Bakker AQ, van Gastel-Mol EJ, Wolvers-Tettero IL et al. TCR gene rearrangements and expression of the pre-T cell receptor complex during human T-cell differentiation. Blood 1999; 93: 3033–3043. CASPubMed Google Scholar