Growth autonomy and lineage switching in BCR-ABL-transduced human cord blood cells depend on different functional domains of BCR-ABL (original) (raw)
Deininger MWN, Goldman JM, Melo JV . The molecular biology of chronic myeloid leukemia. Blood 2000; 96: 3343–3356. CASPubMed Google Scholar
Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D . The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986; 233: 212–214. ArticleCASPubMed Google Scholar
Konopka JB, Witte ON . Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol Cell Biol 1985; 5: 3116–3123. ArticleCASPubMedPubMed Central Google Scholar
Van Etten RA, Jackson P, Baltimore D . The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989; 58: 669–678. ArticleCASPubMed Google Scholar
Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830. ArticleCASPubMed Google Scholar
Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J . Acute leukemia in bcr/abl transgenic mice. Nature 1990; 344: 251–253. ArticleCASPubMed Google Scholar
Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082. ArticleCASPubMed Google Scholar
Evans CA, Owen-Lynch J, Whetton AD, Dive C . Activation of the Abelson tyrosine kinase activity is associated with suppression of apoptosis in hemopoietic cells. Cancer Res 1993; 53: 1735–1738. CASPubMed Google Scholar
Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566. ArticleCASPubMed Google Scholar
Vigneri P, Wang JYJ . Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 2001; 7: 228–234. ArticleCASPubMed Google Scholar
Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037. ArticleCASPubMed Google Scholar
Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652. ArticleCASPubMed Google Scholar
Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–1432. ArticleCASPubMed Google Scholar
Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997; 16: 6151–6161. ArticleCASPubMedPubMed Central Google Scholar
Roumiantsev S, de Aos IE, Varticovski L, Ilaria RL, Van Etten RA . The src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood 2001; 97: 4–13. ArticleCASPubMed Google Scholar
Zhang X, Wong R, Hao SX, Pear WS, Ren R . The SH2 domain of Bcr-Abl is not required to induce a murine myeloproliferative disease; however, SH2 signaling influences disease latency and phenotype. Blood 2001; 97: 277–287. ArticleCASPubMed Google Scholar
Eaves AC, Eaves CJ . Abnormalities in the erythroid progenitor compartments in patients with chronic myelogenous leukemia (CML). Exp Hematol 1979; 7: 65–75. PubMed Google Scholar
Strife A, Lambek C, Wisniewski D, Wachter M, Gulati SC, Clarkson BD . Discordant maturation as the primary biological defect in chronic myelogenous leukemia. Cancer Res 1988; 48: 1035–1041. CASPubMed Google Scholar
Bedi A, Zehnbauer BA, Barber J, Sharkis S, Jones R . Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 1994; 83: 2038–2044. CASPubMed Google Scholar
Maguer-Satta V, Burl S, Liu L, Damen J, Chahine H, Krystal G et al. BCR-ABL accelerates C2-ceramide-induced apoptosis. Oncogene 1998; 16: 237–248. ArticleCASPubMed Google Scholar
Jiang X, Lopez A, Holyoake T, Eaves A, Eaves C . Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc Natl Acad Sci USA 1999; 96: 12804–12809. ArticleCASPubMedPubMed Central Google Scholar
Hariharan IK, Adams JM, Cory S . BCR-ABL oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia. Oncogene Res 1988; 3: 387–399. CASPubMed Google Scholar
Sirard C, Laneuville P, Dick J . Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism. Blood 1994; 83: 1575–1585. CASPubMed Google Scholar
Anderson SM, Mladenovic J . The BCR-ABL oncogene requires both kinase activity and src-homology 2 domain to induce cytokine secretion. Blood 1996; 87: 238–244. CASPubMed Google Scholar
Zhang X, Ren R . BCR-ABL efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte–macrophage colony-stimulating factor in mice: a novel model for chronic myelogenous leukemia. Blood 1998; 92: 3829–3840. CASPubMed Google Scholar
Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA . The p190, p210, and p230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412. ArticleCASPubMedPubMed Central Google Scholar
Jiang X, Ng E, Yip C, Eisterer W, Chalandon Y, Stuible M et al. Primitive interleukin 3 null hematopoietic cells transduced with BCR-ABL show accelerated loss after culture of factor-independence in vitro and leukemogenic activity in vivo. Blood 2002; 100: 3731–3740. ArticleCASPubMed Google Scholar
Peters DG, Klucher KM, Perlingeiro RC, Dessain SK, Koh EY, Daley GQ . Autocrine and paracrine effects of an ES-cell derived, BCR/ABL-transformed hematopoietic cell line that induces leukemia in mice. Oncogene 2001; 20: 2636–2646. ArticleCASPubMed Google Scholar
Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, Van Etten RA . Interleukin 3 and granulocyte–macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL. Blood 2001; 97: 1442–1450. ArticleCASPubMed Google Scholar
Zhao RC, Jiang Y, Verfaillie CM . A model of human p210bcr/ABL mediated CML by transducing primary normal human CD34+ cells with a BCR/ABL containing retroviral vector. Blood 2001; 97: 2406–2412. ArticleCASPubMed Google Scholar
Chalandon Y, Jiang X, Hazelwood G, Loutet S, Conneally E, Eaves A et al. Modulation of p210BCR-ABL activity in transduced primary human hematopoietic cells controls lineage reprogramming. Blood 2002; 99: 3197–3204. ArticleCASPubMed Google Scholar
Kinsella TM, Nolan GP . Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum Gene Ther 1996; 7: 1405–1413. ArticleCASPubMed Google Scholar
Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90: 8392–8396. ArticleCASPubMedPubMed Central Google Scholar
Lansdorp PM, Dragowska W . Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J Exp Med 1992; 175: 1501–1509. ArticleCASPubMed Google Scholar
Maguer-Satta V, Petzer AL, Eaves AC, Eaves CJ . BCR-ABL expression in different subpopulations of functionally characterized Ph+ CD34+ cells from patients with chronic myeloid leukemia. Blood 1996; 88: 1796–1804. CASPubMed Google Scholar
Ilaria Jr RL, Van Etten RA . The SH2 domain of P210BCR/ABL is not required for the transformation of hematopoietic factor-dependent cells. Blood 1995; 86: 3897–3904. PubMed Google Scholar
Oda T, Tamura S, Matsuguchi T, Griffin JD, Druker BJ . The SH2 domain of Abl is not required for factor-independent growth induced by Bcr-Abl in a murine myeloid cell line. Leukemia 1995; 9: 295–301. CASPubMed Google Scholar
Lozzio BB, Lozzio CB, Bamberger EG, Feliu AS . A multipotential leukemia cell line (K-562) of human origin. Proc Soc Exp Biol Med 1981; 166: 546–550. ArticleCASPubMed Google Scholar
McWhirter JR, Wang JYJ . An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J 1993; 12: 1533–1546. ArticleCASPubMedPubMed Central Google Scholar
Goga A, McLaughlin J, Afar DEH, Saffran DC, Witte ON . Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 1995; 82: 981–988. ArticleCASPubMed Google Scholar
Jiang X, Stuible M, Chalandon Y, Li A, Chan WY, Eisterer W et al. Evidence for a positive role of SHIP in the BCR-ABL-mediated transformation of primitive murine hematopoietic cells and in human chronic myeloid leukemia. Blood 2003; 102: 2976–2984. ArticleCASPubMed Google Scholar
Issaad C, Vainchenker W . Growth of erythroid colonies in chronic myelogenous leukemia is independent of erythropoietin only in the presence of steel factor. Blood 1994; 84: 3447–3456. CASPubMed Google Scholar
Stopka T, Zivny JH, Stopkova P, Prchal JF, Prchal JT . Human hematopoietic progenitors express erythropoietin. Blood 1998; 91: 3766–3772. CASPubMed Google Scholar
Ghaffari S, Wu H, Gerlach M, Han Y, Lodish HF, Daley GQ . BCR-ABL and v-SRC tyrosine kinase oncoproteins support normal erythroid development in erythropoietin receptor-deficient progenitor cells. Proc Natl Acad Sci USA 1999; 96: 13186–13190. ArticleCASPubMedPubMed Central Google Scholar
Lopez AF, To LB, Yang YC, Gamble JR, Shannon MF, Burns GF et al. Stimulation of proliferation, differentiation, and function of human cells by primate interleukin 3. Proc Natl Acad Sci USA 1987; 84: 2761–2765. ArticleCASPubMedPubMed Central Google Scholar
Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 1986; 232: 61–65. ArticleCASPubMed Google Scholar
Graber SE, Krantz SB . Erythropoietin and the control of red cell production. Annu Rev Med 1978; 29: 51–66. ArticleCASPubMed Google Scholar
Pharr PN, Ogawa M, Hofbauer A, Longmore GD . Expression of an activated erythropoietin or a colony-stimulating factor 1 receptor by pluripotent progenitors enhances colony formation but does not induce differentiation. Proc Natl Acad Sci USA 1994; 91: 7482–7486. ArticleCASPubMedPubMed Central Google Scholar
Socolovsky M, Lodish HF, Daley GQ . Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. Proc Natl Acad Sci USA 1998; 95: 6573–6575. ArticleCASPubMedPubMed Central Google Scholar
Metcalf D . Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 1998; 92: 345–348. CASPubMed Google Scholar
Hogge DE, Lansdorp PM, Reid D, Gerhard B, Eaves CJ . Enhanced detection, maintenance and differentiation of primitive human hematopoietic cells in cultures containing murine fibroblasts engineered to produce human Steel factor, interleukin-3 and granulocyte colony-stimulating factor. Blood 1996; 88: 3765–3773. CASPubMed Google Scholar