Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors (original) (raw)
Faretta M, Di Croce L, Pellici PG . Effects of the acute myeloid leukaemia-associated fusion proteins on nuclear architecture. Semin Haematol 2001; 38: 42–53. ArticleCAS Google Scholar
Melnick A, Licht JD . Histone deactylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol 2002; 9: 322–332. Article Google Scholar
De Ruijter AJM, Van Gennip AH, Caron HN, Kemp S, Van Kuilenburg ABP . Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003; 370: 737–749. ArticleCAS Google Scholar
Gregoretti IV, Lee Y-M, Goodson HV . Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004; 338: 17–31. ArticleCAS Google Scholar
Blander G, Guarente L . The Sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73: 417–435. ArticleCAS Google Scholar
Gao L, Cueto MA, Asselbergs F, Atadja P . Cloning and functional characterisation of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 2002; 277: 25748–25755. ArticleCAS Google Scholar
Sengupta S, Seto E . Regulation of histone deacetylase activities. J Cell Biochem 2004; 93: 57–67. ArticleCAS Google Scholar
Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D et al. In vivo destabilization of dynamic microtubules by HDAC6 mediated deacetylation. EMBO J 2002; 21: 6820–6831. ArticleCAS Google Scholar
Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002; 21: 2383–2396. ArticleCAS Google Scholar
Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al. Negative control of p53 by Sir2 promotes cell survival under stress. Cell 2001; 107: 137–148. ArticleCAS Google Scholar
Vaziri H, Dessain SK, Ng EE, Imai SI, Frye RA, Pandita TK et al. _h_SIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 2002; 107: 149–159. Article Google Scholar
Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303: 2011–2105. ArticleCAS Google Scholar
Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116: 551–563. ArticleCAS Google Scholar
Marks PA, Richon VM, Miller T, Kelly WK . Histone deacetylase inhibitors. Adv Cancer Res 2004; 91: 137–168. ArticleCAS Google Scholar
Kelly WK, O’Connor OA, Marks PA . Histone deacetylase inhibitors: from target to clinical trials. Expert Opin Investig Drugs 2002; 11: 1695–1713. ArticleCAS Google Scholar
Barlow AL, van Drunen CM, Johnson CA, Tweedie S, Bird A, Turner BM . dSIR2 and dHDAC6: two novel, inhibitor resistant deacetylases in Drosophila melanogaster. Exp Cell Res 2001; 265: 90–103. ArticleCAS Google Scholar
Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20: 6969–6978. ArticleCAS Google Scholar
Turner BM, O’Neill LP, Allan IM . Histone H4 acetylation in human cells. Frequency of acetylation at different sites defined by immunolabeling with site specific antibodies. FEBS Lett 1989; 253: 141–145. ArticleCAS Google Scholar
White DA, Belyaev ND, Turner BM . Preparation of site specific antibodies to acetylated histones. Methods 1999; 19: 417–424. ArticleCAS Google Scholar
Johnson CA, White DA, Lavender JS, O’Neill LP, Turner BM . Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J Biol Chem 2002; 277: 9590–9597. ArticleCAS Google Scholar
Drexler HG, Quentmeier H, MacLeod RAF, Uphoff CC, Hu Z-B . Leukemia cell lines: in vitro models for the study of acute promyelocytic leukaemia. Leukemia Res 1995; 19: 681–691. ArticleCAS Google Scholar
Kramer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA et al. The histone decetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 2003; 22: 3411–3420. Article Google Scholar
Whitlock JP, Galeazzi D, Schulman H . Acetylation and calcium-dependent phosphorylation of histone H3 in nuclei from butyrate-treated HeLa cells. J Biol Chem 1983; 258: 1299–1304. CASPubMed Google Scholar
Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T . Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer 2004; 112: 26–32. ArticleCAS Google Scholar
Zhu P, Martin E, Mengwasser J, Schlag P, Janssen K-P, Gottlicher M . Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 2004; 5: 455–463. ArticleCAS Google Scholar
Araki T, Sasaki Y, Milbrandt J . Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 2004; 305: 1010–1013. ArticleCAS Google Scholar
Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 2003; 100: 10794–10799. ArticleCAS Google Scholar
Fulco M, Schlitz RL, Iezzi S, King MT, Zhao P, Kishiwaya Y et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003; 12: 51–62. ArticleCAS Google Scholar
Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004; 305: 390–396. ArticleCAS Google Scholar
Lachner M, O’Sullivan RJ, Jenuwein TJ . An epigenetic road map for histone lysine methylation. J Cell Sci 2003; 116: 2117–2124. ArticleCAS Google Scholar
Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to HOX gene promoters. Mol Cell 2002; 10: 1107–1117. ArticleCAS Google Scholar
Van Lint C, Emiliani S, Verdin E . The expression of a small fraction of cellular gene is changed in response to histone hyperacetylation. Gene Exp 1996; 5: 245–254. CAS Google Scholar
Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 2002; 31: 141–149. ArticleCAS Google Scholar
Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA 2005; 102: 3697–3702. ArticleCAS Google Scholar
Kyrylenko S, Kyrylenko O, Suuronen T, Salminen A . Differential regulation of the Sir2 histone deacetylase genes by inhibitors of class I and II histone deacetylases. Cell Mol Life Sci 2003; 60: 1990–1997. ArticleCAS Google Scholar