Silencing of the tumor suppressor gene FHIT is highly characteristic for MLL gene rearranged infant acute lymphoblastic leukemia (original) (raw)
Pui CH, Kane JR, Crist WM . Biology and treatment of infant leukemias. Leukemia 1995; 9: 762–769. CASPubMed Google Scholar
Greaves MF . Infant leukaemia biology, aetiology and treatment. Leukemia 1996; 10: 372–377. CASPubMed Google Scholar
Pieters R, den Boer ML, Durian M, Janka G, Schmiegelow K, Kaspers GJ et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia – implications for treatment of infants. Leukemia 1998; 12: 1344–1348. ArticleCASPubMed Google Scholar
Biondi A, Cimino G, Pieters R, Pui CH . Biological and therapeutic aspects of infant leukemia. Blood 2000; 96: 24–33. CASPubMed Google Scholar
Ramakers-van Woerden NL, Beverloo HB, Veerman AJ, Camitta BM, Loonen AH, van Wering ER et al. In vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age, MLL rearrangements and immunophenotype. Leukemia 2004; 18: 521–529. ArticleCASPubMed Google Scholar
Taki T, Ida K, Bessho F, Hanada R, Kikuchi A, Yamamoto K et al. Frequency and clinical significance of the MLL gene rearrangements in infant acute leukemia. Leukemia 1996; 10: 1303–1307. CASPubMed Google Scholar
Chen CS, Sorensen PH, Domer PH, Reaman GH, Korsmeyer SJ, Heerema NA et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood 1993; 81: 2386–2393. CASPubMed Google Scholar
Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47. ArticleCASPubMed Google Scholar
Armstrong SA, Golub TR, Korsmeyer SJ . MLL-rearranged leukemias: insights from gene expression profiling. Semin Hematol 2003; 40: 268–273. ArticleCASPubMed Google Scholar
Armstrong SA, Kung AL, Mabon ME, Silverman LB, Stam RW, Den Boer ML et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3: 173–183. ArticleCASPubMed Google Scholar
Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J et al. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 1996; 84: 587–597. ArticleCASPubMed Google Scholar
Barnes LD, Garrison PN, Siprashvili Z, Guranowski A, Robinson AK, Ingram SW et al. Fhit, a putative tumor suppressor in humans, is a dinucleoside 5′,5″′-P1,P3-triphosphate hydrolase. Biochemistry 1996; 35: 11529–11535. ArticleCASPubMed Google Scholar
Siprashvili Z, Sozzi G, Barnes LD, McCue P, Robinson AK, Eryomin V et al. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci USA 1997; 94: 13771–13776. ArticleCASPubMedPubMed Central Google Scholar
Roz L, Gramegna M, Ishii H, Croce CM, Sozzi G . Restoration of fragile histidine triad (FHIT) expression induces apoptosis and suppresses tumorigenicity in lung and cervical cancer cell lines. Proc Natl Acad Sci USA 2002; 99: 3615–3620. ArticleCASPubMedPubMed Central Google Scholar
Sevignani C, Calin GA, Cesari R, Sarti M, Ishii H, Yendamuri S et al. Restoration of fragile histidine triad (FHIT) expression induces apoptosis and suppresses tumorigenicity in breast cancer cell lines. Cancer Res 2003; 63: 1183–1187. CASPubMed Google Scholar
Dumon KR, Ishii H, Fong LY, Zanesi N, Fidanza V, Mancini R et al. FHIT gene therapy prevents tumor development in Fhit-deficient mice. Proc Natl Acad Sci USA 2001; 98: 3346–3351. ArticleCASPubMedPubMed Central Google Scholar
Ishii H, Dumon KR, Vecchione A, Fong LY, Baffa R, Huebner K et al. Potential cancer therapy with the fragile histidine triad gene: review of the preclinical studies. JAMA 2001; 286: 2441–2449. ArticleCASPubMed Google Scholar
Krivak TC, McBroom JW, Seidman J, Venzon D, Crothers B, MacKoul PJ et al. Abnormal fragile histidine triad (FHIT) expression in advanced cervical carcinoma: a poor prognostic factor. Cancer Res 2001; 61: 4382–4385. CASPubMed Google Scholar
Takizawa S, Nakagawa S, Nakagawa K, Yasugi T, Fujii T, Kugu K et al. Abnormal Fhit expression is an independent poor prognostic factor for cervical cancer. Br J Cancer 2003; 88: 1213–1216. ArticleCASPubMedPubMed Central Google Scholar
Rocco A, Schandl L, Chen J, Wang H, Tulassay Z, McNamara D et al. Loss of FHIT protein expression correlates with disease progression and poor differentiation in gastric cancer. J Cancer Res Clin Oncol 2003; 129: 84–88. CASPubMed Google Scholar
Albitar M, Manshouri T, Gidel C, Croce C, Kornblau S, Pierce S et al. Clinical significance of fragile histidine triad gene expression in adult acute lymphoblastic leukemia. Leuk Res 2001; 25: 859–864. ArticleCASPubMed Google Scholar
Kantarjian HM, Talpaz M, O'Brien S, Manshouri T, Cortes J, Giles F et al. Significance of FHIT expression in chronic myelogenous leukemia. Clin Cancer Res 1999; 5: 4059–4064. CASPubMed Google Scholar
Zheng S, Ma X, Zhang L, Gunn L, Smith MT, Wiemels JL et al. Hypermethylation of the 5' CpG island of the FHIT gene is associated with hyperdiploid and translocation-negative subtypes of pediatric leukemia. Cancer Res 2004; 64: 2000–2006. ArticleCASPubMed Google Scholar
Kaspers GJ, Veerman AJ, Pieters R, Broekema GJ, Huismans DR, Kazemier KM et al. Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay. Br J Cancer 1994; 70: 1047–1052. ArticleCASPubMedPubMed Central Google Scholar
Stam RW, den Boer ML, Meijerink JP, Ebus ME, Peters GJ, Noordhuis P et al. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood 2003; 101: 1270–1276. ArticleCASPubMed Google Scholar
Zochbauer-Muller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R et al. 5' CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res 2001; 61: 3581–3585. CASPubMed Google Scholar
Pekarsky Y, Zanesi N, Palamarchuk A, Huebner K, Croce CM . FHIT: from gene discovery to cancer treatment and prevention. Lancet Oncol 2002; 3: 748–754. ArticleCASPubMed Google Scholar
Rozovskaia T, Ravid-Amir O, Tillib S, Getz G, Feinstein E, Agrawal H et al. Expression profiles of acute lymphoblastic and myeloblastic leukemias with ALL-1 rearrangements. Proc Natl Acad Sci USA 2003; 100: 7853–7858. ArticleCASPubMedPubMed Central Google Scholar
Gutierrez MI, Siraj AK, Bhargava M, Ozbek U, Banavali S, Chaudhary MA et al. Concurrent methylation of multiple genes in childhood ALL: Correlation with phenotype and molecular subgroup. Leukemia 2003; 17: 1845–1850. ArticleCASPubMed Google Scholar
Greaves MF . Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia 1988; 2: 120–125. CASPubMed Google Scholar
Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997; 94: 13950–13954. ArticleCASPubMedPubMed Central Google Scholar
Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 2004; 103: 1085–1088. ArticleCASPubMed Google Scholar
Stam RW, den Boer ML, Schneider P, Nollau P, Horstmann M, Beverloo HB et al. Targeting FLT3 in primary MLL gene rearranged infant acute lymphoblastic leukemia. Blood 2005.
Popescu NC . Genetic alterations in cancer as a result of breakage at fragile sites. Cancer Lett 2003; 192: 1–17. ArticleCASPubMed Google Scholar
Shu XO, Ross JA, Pendergrass TW, Reaman GH, Lampkin B, Robison LL . Parental alcohol consumption, cigarette smoking, and risk of infant leukemia: a Childrens Cancer Group study. J Natl Cancer Inst 1996; 88: 24–31. ArticleCASPubMed Google Scholar
Brondum J, Shu XO, Steinbuch M, Severson RK, Potter JD, Robison LL . Parental cigarette smoking and the risk of acute leukemia in children. Cancer 1999; 85: 1380–1388. ArticleCASPubMed Google Scholar
Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 2002; 295: 1079–1082. ArticleCASPubMed Google Scholar
Huret JL, Dessen P, Bernheim A . An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia 2001; 15: 987–989. ArticleCASPubMed Google Scholar
Birke M, Schreiner S, Garcia-Cuellar MP, Mahr K, Titgemeyer F, Slany RK . The MT domain of the proto-oncoprotein MLL binds to CpG-containing DNA and discriminates against methylation. Nucleic Acids Res 2002; 30: 958–965. ArticleCASPubMedPubMed Central Google Scholar
Ayton PM, Chen EH, Cleary ML . Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol 2004; 24: 10470–10478. ArticleCASPubMedPubMed Central Google Scholar