A hypothesis for an embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues (original) (raw)
Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869. ArticleCASPubMed Google Scholar
Pallante BA, Duignan I, Okin D, Chin A, Bressan MC, Mikawa T et al. Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ Res 2007; 100: e1–e11. ArticleCASPubMed Google Scholar
Anjos-Afonso F, Bonnet D . Non-hematopoietic/endothelial SSEA-1pos cells defines the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 2007; 109: 1298–1306. ArticleCASPubMed Google Scholar
Baal N, Reisinger K, Jahr H, Bohle RM, Liang O, Munstedt K et al. Expression of transcription factor Oct-4 and other embryonic genes in CD133 positive cells from human umbilical cord blood. Thromb Haemost 2004; 92: 767–775. ArticleCASPubMed Google Scholar
Zhao Y, Wang H, Mazzone T . Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 2006; 312: 2454–2464. ArticleCASPubMed Google Scholar
McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 2005; 38: 245–255. ArticleCASPubMedPubMed Central Google Scholar
Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E et al. Morphological and molecular characterization of novel population of CXCR4+SSEA-4+Oct-4+ very small embryonic-like (VSEL) cells purified from human cord blood – preliminary report. Leukemia 2007; 21: 297–303. ArticleCASPubMed Google Scholar
Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol 2006; 168: 1879–1888. ArticleCASPubMedPubMed Central Google Scholar
Dyce PW, Zhu H, Craig J, Li J . Stem cells with multilineage potential derived from porcine skin. Biochem Biophys Res Commun 2004; 316: 651–658. ArticleCASPubMed Google Scholar
Kruse C, Kajahn J, Petschnik AE, Maass A, Klink E, Rapoport DH et al. Adult pancreatic stem/progenitor cells spontaneously differentiate in vitro into multiple cell lineages and form teratoma-like structures. Ann Anat 2006; 188: 503–517. ArticleCASPubMed Google Scholar
Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006; 440: 1199–1203. ArticleCASPubMed Google Scholar
Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 2004; 119: 1001–1012. ArticleCASPubMed Google Scholar
Ling TY, Kuo MD, Li CL, Yu AL, Huang YH, Wu TJ et al. Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci USA 2006; 103: 9530–9535. ArticleCASPubMedPubMed Central Google Scholar
Hay DC, Sutherland L, Clark J, Burdon T . Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 2004; 22: 225–235. ArticleCASPubMed Google Scholar
Boiani M, Scholer HR . Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 2005; 6: 872–884. ArticleCASPubMed Google Scholar
Niwa H, Miyazaki J, Smith AG . Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000; 24: 372–376. ArticleCASPubMed Google Scholar
Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631–642. ArticleCASPubMed Google Scholar
Muramatsu T, Muramatsu H . Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J 2004; 21: 41–45. ArticleCASPubMed Google Scholar
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49. ArticleCASPubMed Google Scholar
Colter DC, Sekiya I, Prockop DJ . Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 2001; 98: 7841–7845. ArticleCASPubMedPubMed Central Google Scholar
Pochampally RR, Smith JR, Ylostalo J, Prockop DJ . Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 2004; 103: 1647–1652. ArticleCASPubMed Google Scholar
D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC . Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004; 117: 2971–2981. ArticleCASPubMed Google Scholar
Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR . Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290: 1779–1782. ArticleCASPubMed Google Scholar
Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM et al. Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 2003; 9: 1528–1532. ArticleCASPubMed Google Scholar
Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105: 369–377. ArticleCASPubMed Google Scholar
Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000; 6: 1229–1234. ArticleCASPubMed Google Scholar
LaBarge MA, Blau HM . Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 2002; 111: 589–601. ArticleCASPubMed Google Scholar
Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N et al. Bone marrow as a potential source of hepatic oval cells. Science 1999; 284: 1168–1170. ArticleCASPubMed Google Scholar
Weismann A . The continuity of the germ-plasm as the foundation of a theory of heredity. Fisher-Verlag: Jena, 1885. Google Scholar
Kucia M, Machalinski B, Ratajczak MZ . The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp 2006; 66: 331–341. Google Scholar
Donovan PJ . The germ cell – the mother of all stem cells. Int J Dev Biol 1998; 42: 1043–1050. CASPubMed Google Scholar
Zwaka TP, Thomson JA . A germ cell origin of embryonic stem cells? Development 2005; 132: 227–233. ArticleCASPubMed Google Scholar
Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–156. ArticleCASPubMed Google Scholar
McLaren A . Development of primordial germ cells in the mouse. Andrologia 1992; 24: 243–247. ArticleCASPubMed Google Scholar
Martin GR . Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78: 7634–7638. ArticleCASPubMedPubMed Central Google Scholar
Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000; 227: 271–278. ArticleCASPubMed Google Scholar
Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 1995; 92: 7844–7848. ArticleCASPubMedPubMed Central Google Scholar
Upadhyay S, Zamboni L . Ectopic germ cells: natural model for the study of germ cell sexual differentiation. Proc Natl Acad Sci USA 1982; 79: 6584–6588. ArticleCASPubMedPubMed Central Google Scholar
Francavilla S, Zamboni L . Differentiation of mouse ectopic germinal cells in intra- and perigonadal locations. J Exp Zool 1985; 233: 101–109. ArticleCASPubMed Google Scholar
De Felici M, McLaren A . In vitro culture of mouse primordial germ cells. Exp Cell Res 1983; 144: 417–427. ArticleCASPubMed Google Scholar
Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R et al. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 2003; 100: 12207–12212. ArticleCASPubMedPubMed Central Google Scholar
Matsui Y, Zsebo K, Hogan BL . Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 1992; 70: 841–847. ArticleCASPubMed Google Scholar
Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 1998; 95: 13726–13731. ArticleCASPubMedPubMed Central Google Scholar
Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI et al. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells 2003; 21: 598–609. ArticlePubMed Google Scholar
Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino T et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 2002; 129: 1807–1817. ArticleCASPubMed Google Scholar
Macchiarini P, Ostertag H . Uncommon primary mediastinal tumours. Lancet Oncol 2004; 5: 107–118. ArticlePubMed Google Scholar
Oosterhuis JW, Looijenga LH . Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 2005; 5: 210–222. ArticleCASPubMed Google Scholar
Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200: 123–135. ArticlePubMedPubMed Central Google Scholar
Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 2005; 122: 303–315. ArticleCASPubMed Google Scholar
Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R et al. Derivation of male germ cells from bone marrow stem cells. Lab Invest 2006; 86: 654–663. ArticleCASPubMed Google Scholar
Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ . Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 2005; 19: 1118–1127. ArticleCASPubMed Google Scholar
Friedenstein AJ, Piatetzky II S, Petrakova KV . Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 1966; 16: 381–390. CASPubMed Google Scholar
Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974; 2: 83–92. CASPubMed Google Scholar
Lamoury FM, Croitoru-Lamoury J, Brew BJ . Undifferentiated mouse mesenchymal stem cells spontaneously express neural and stem cell markers Oct-4 and Rex-1. Cytotherapy 2006; 8: 228–242. ArticleCASPubMed Google Scholar
Zeng L, Rahrmann E, Hu Q, Lund T, Sandquist L, Felten M et al. Multipotent adult progenitor cells from swine bone marrow. Stem Cells 2006; 24: 2355–2366. ArticleCASPubMed Google Scholar
Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH et al. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 2004; 22: 617–624. ArticlePubMed Google Scholar
Brzoska E, Grabowska I, Hoser G, Streminska W, Wasilewska D, Machaj EK et al. Participation of stem cells from human cord blood in skeletal muscle regeneration of SCID mice. Exp Hematol 2006; 34: 1262–1270. ArticleCASPubMed Google Scholar
Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR et al. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 2004; 36: 603–613. ArticleCASPubMed Google Scholar
Kakinuma S, Tanaka Y, Chinzei R, Watanabe M, Shimizu-Saito K, Hara Y et al. Human umbilical cord blood as a source of transplantable hepatic progenitor cells. Stem Cells 2003; 21: 217–227. ArticlePubMed Google Scholar
Newsome PN, Johannessen I, Boyle S, Dalakas E, McAulay KA, Samuel K et al. Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology 2003; 124: 1891–1900. ArticlePubMed Google Scholar
Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K . Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 2002; 115: 2131–2138. ArticleCASPubMed Google Scholar
Henning RJ, Abu-Ali H, Balis JU, Morgan MB, Willing AE, Sanberg PR . Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant 2004; 13: 729–739. ArticlePubMed Google Scholar
Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Muller-Hilke B et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 2005; 66: 45–54. ArticleCASPubMed Google Scholar
Zeng F, Chen MJ, Baldwin DA, Gong ZJ, Yan JB, Qian H et al. Multiorgan engraftment and differentiation of human cord blood CD34+ Lin- cells in goats assessed by gene expression profiling. Proc Natl Acad Sci USA 2006; 103: 7801–7806. ArticleCASPubMedPubMed Central Google Scholar
Carlin R, Davis D, Weiss M, Schultz B, Troyer D . Expression of early transcription factors Oct4, Sox2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 2006; 4: 8. ArticlePubMedPubMed CentralCAS Google Scholar
Dyce PW, Wen L, Li J . In vitro germline potential of stem cells derived from fetal porcine skin. Nat Cell Biol 2006; 8: 384–390. ArticleCASPubMed Google Scholar
Danner S, Kajahn J, Geismann C, Klink E, Kruse C . Derivation of oocyte-like cells from a clonal pancreatic stem cell line. Mol Hum Reprod 2007; 13: 11–20. ArticleCASPubMed Google Scholar
Koso H, Ouchi Y, Tabata Y, Aoki Y, Satoh S, Arai K et al. SSEA-1 marks regionally restricted immature subpopulations of embryonic retinal progenitor cells that are regulated by the Wnt signaling pathway. Dev Biol 2006; 292: 265–276. ArticleCASPubMed Google Scholar
De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, Perin L et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106. ArticleCASPubMed Google Scholar
Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 2004; 95: 1191–1199. ArticleCASPubMedPubMed Central Google Scholar
Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K et al. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 2004; 110: 3213–3220. ArticleCASPubMed Google Scholar
Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 2006; 20: 18–28. ArticleCASPubMed Google Scholar
Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, Blau HM . Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol 2005; 279: 336–344. ArticleCASPubMed Google Scholar
Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438. ArticleCASPubMed Google Scholar
Li Y, Reca RG, Atmaca-Sonmez P, Ratajczak MZ, Ildstad ST, Kaplan HJ et al. Retinal pigment epithelium damage enhances expression of chemoattractants and migration of bone marrow-derived stem cells. Invest Ophthalmol Vis Sci 2006; 47: 1646–1652. ArticlePubMed Google Scholar
Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, Burdick MD et al. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J Immunol 2006; 176: 1916–1927. ArticleCASPubMed Google Scholar
Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S . Circulating osteoblast-lineage cells in humans. N Engl J Med 2005; 352: 1959–1966. ArticleCASPubMed Google Scholar
Togel F, Isaac J, Hu Z, Weiss K, Westenfelder C . Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 2005; 67: 1772–1784. ArticlePubMed Google Scholar
Lemoli RM, Catani L, Talarico S, Loggi E, Gramenzi A, Baccarani U et al. Mobilization of bone marrow-derived hematopoietic and endothelial stem cells after orthotopic liver transplantation and liver resection. Stem Cells 2006; 24: 2817–2825. ArticleCASPubMed Google Scholar
Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 2004; 110: 1847–1854. ArticleCASPubMed Google Scholar
Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol 2004; 22: 1095–1102. ArticleCASPubMed Google Scholar
Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J . Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 2004; 18: 29–40. ArticleCASPubMed Google Scholar
Virchow R . Editorial Archive fuer pathologische. Anatomie und Physiologie fuer klinische Medizin 1855; 8: 23–54. Google Scholar
Ratajczak MZ, Kucia M, Dobrowolska H, Wanzeck J, Reca R, Ratajczak J . Emerging concept of cancer as a stem cell disorder. CEJB 2006; 4: 1–15. Google Scholar
Ratajczak MZ, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J . The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 2006; 20: 1915–1924. ArticleCASPubMed Google Scholar
Rossant J, Papaioannou VE . The relationship between embryonic, embryonal carcinoma and embryo-derived stem cells. Cell Differ 1984; 15: 155–161. ArticleCASPubMed Google Scholar
Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS . Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans 2005; 33: 1526–1530. ArticleCASPubMed Google Scholar
Barr FG . Molecular genetics and pathogenesis of rhabdomyosarcoma. J Pediatr Hematol Oncol 1997; 19: 483–491. ArticleCASPubMed Google Scholar
Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H et al. Gastric cancer originating from bone marrow-derived cells. Science 2004; 306: 1568–1571. ArticleCASPubMed Google Scholar