- Aghajanian GK, Marek GJ (1997). Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36: 589–599.
Article CAS PubMed Google Scholar
- Ago Y, Sakaue M, Baba A, Matsuda T (2002). Selective reduction by isolation rearing of 5-HT1A receptor-mediated dopamine release in vivo in the frontal cortex of mice. J Neurochem 83: 353–359.
Article CAS PubMed Google Scholar
- Andrade R, Nicoll RA (1987). Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol 394: 99–124.
Article CAS PubMed PubMed Central Google Scholar
- Araneda R, Andrade R (1991). 5-Hydroxytryptamine 2 and 5-hydroxytryptamine 1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40: 399–412.
Article CAS PubMed Google Scholar
- Arborelius L, Nomikos GG, Hacksell U, Svensson TH (1993). (R)-8-OH-DPAT preferentially increases dopamine release in rat medial prefrontal cortex. Acta Physiol Scand 148: 465–466.
Article CAS PubMed Google Scholar
- Arnsten AF (1997). Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 11: 151–162.
Article CAS PubMed Google Scholar
- Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6: 115–116.
Article CAS PubMed Google Scholar
- Ashby Jr CR, Edwards E, Wang RY (1994). Electrophysiological evidence for a functional interaction between 5-HT1A and 5-HT2A receptors in the rat medial prefrontal cortex: an iontophoretic study. Synapse 17: 173–181.
Article CAS PubMed Google Scholar
- Azmitia EC, Segal M (1978). An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179: 641–667.
Article CAS PubMed Google Scholar
- Backus LI, Sharp T, Grahame-Smith DG (1990). Behavioural evidence for a functional interaction between central 5-HT2 and 5-HT1A receptors. Br J Pharmacol 100: 793–799.
Article CAS PubMed PubMed Central Google Scholar
- Barnes NM, Sharp T (1999). A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083–1152.
Article CAS PubMed Google Scholar
- Baunez C, Robbins TW (1999). Effects of dopamine depletion of the dorsal striatum and further interaction with subthalamic nucleus lesions in an attentional task in the rat. Neuroscience 92: 1343–1356.
Article CAS PubMed Google Scholar
- Baxter LR (1990). Brain imaging as a tool in establishing a theory of brain pathology in obsessive compulsive disorder. J Clin Psychiatry 51(Suppl): 22–25; discussion 26.
PubMed Google Scholar
- Berendsen HH, Broekkamp CL (1990). Behavioural evidence for functional interactions between 5-HT-receptor subtypes in rats and mice. Br J Pharmacol 101: 667–673.
Article CAS PubMed PubMed Central Google Scholar
- Blue ME, Yagaloff KA, Mamounas LA, Hartig PR, Molliver ME (1988). Correspondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res 453: 315–328.
Article CAS PubMed Google Scholar
- Braff DL (1993). Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 19: 233–259.
Article CAS PubMed Google Scholar
- Carli M, Samanin R (1992). Serotonin2 receptor agonists and serotonergic anorectic drugs affect rats' performance differently in a five-choice serial reaction time task. Psychopharmacology 106: 228–234.
Article CAS PubMed Google Scholar
- Carli M, Samanin R (2000). The 5-HT(1A) receptor agonist 8-OH-DPAT reduces rats' accuracy of attentional performance and enhances impulsive responding in a five-choice serial reaction time task: role of presynaptic 5-HT(1A) receptors. Psychopharmacology (Berlin) 149: 259–268.
Article CAS Google Scholar
- Carli M, Balducci C, Samanin R (2000). Low doses of 8-OH-DPAT prevent the impairment of spatial learning caused by intrahippocampal scopolamine through 5-HT(1A) receptors in the dorsal raphe. Br J Pharmacol 131: 375–381.
Article CAS PubMed PubMed Central Google Scholar
- Carli M, Baviera M, Invernizzi RW, Balducci C (2004). The serotonin 5-HT2A receptors antagonist M100907 prevents impairment in attentional performance by NMDA receptor blockade in the rat prefrontal cortex. Neuropsychopharmacology 29: 1637–1647.
Article CAS Google Scholar
- Carli M, Bonalumi P, Samanin R (1998). Stimulation of 5-HT1A receptors in the dorsal raphe reverses the impairment of spatial learning caused by intrahippocampal scopolamine in rats. Eur J Neurosci 10: 221–230.
Article CAS PubMed Google Scholar
- Carli M, Luschi R, Garofalo P, Samanin R (1995). 8-OH-DPAT impairs spatial but not visual learning in a water maze by stimulating 5-HT1A receptors in the hippocampus. Behav Brain Res 67: 67–74.
Article CAS PubMed Google Scholar
- Carli M, Robbins TW, Evenden JL, Everitt BJ (1983). Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9: 361–380.
Article CAS PubMed Google Scholar
- Carr DB, Sesack SR (2000). Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20: 3864–3873.
Article CAS PubMed PubMed Central Google Scholar
- Ceglia I, Carli M, Baviera M, Renoldi G, Calcagno E, Invernizzi RW (2004). The 5-HT receptor antagonist M100,907 prevents extracellular glutamate rising in response to NMDA receptor blockade in the mPFC. J Neurochem 91: 189–199.
Article CAS PubMed Google Scholar
- Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F (2001). Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci 21: 9917–9929.
Article CAS PubMed PubMed Central Google Scholar
- Chudasama Y, Muir JL (2001). Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei? Behav Neurosci 115: 417–428.
Article CAS PubMed Google Scholar
- Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW (2003). Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 146: 105–119.
Article CAS PubMed Google Scholar
- Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004). Cognitive inflexibility after prefrontal serotonin depletion. Science 304: 878–880.
Article CAS PubMed Google Scholar
- Clarke HF, Walker SC, Crofts HS, Dalley JW, Robbins TW, Roberts AC (2005). Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J Neurosci 25: 532–538.
Article CAS PubMed PubMed Central Google Scholar
- Cole BJ, Jones GH, Turner JD (1994). 5-HT1A receptor agonists improve the performance of normal and scopolamine-impaired rats in an operant delayed matching to position task. Psychopharmacology (Berlin) 116: 135–142.
Article CAS Google Scholar
- Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002). Dopaminergic modulation of high-level cognition in Parkinson's disease: the role of the prefrontal cortex revealed by PET. Brain 125: 584–594.
Article PubMed Google Scholar
- Czyrak A, Czepiel K, Mackowiak M, Chocyk A, Wedzony K (2003). Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res 989: 42–51.
Article CAS PubMed Google Scholar
- Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW (2002). Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology 26: 716–728.
Article CAS PubMed Google Scholar
- Darmani NA, Martin BR, Pandey U, Glennon RA (1990). Do functional relationships exist between 5-HT1A and 5-HT2 receptors? Pharmacol Biochem Behav 36: 901–906.
Article CAS PubMed Google Scholar
- DeFelipe J, Arellano JI, Gomez A, Azmitia EC, Munoz A (2001). Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. J Comp Neurol 433: 148–155.
Article CAS PubMed Google Scholar
- Del Arco A, Mora F (1999). Effects of endogenous glutamate on extracellular concentrations of GABA, dopamine, and dopamine metabolites in the prefrontal cortex of the freely moving rat: involvement of NMDA and AMPA/KA receptors. Neurochem Res 24: 1027–1035.
Article CAS PubMed Google Scholar
- Dursun SM, Handley SL (1993). The effects of alpha 2-adrenoceptor antagonists on the inhibition of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced head shakes by 5-HT1A receptor agonists in the mouse. Br J Pharmacol 109: 1046–1052.
Article CAS PubMed PubMed Central Google Scholar
- Egerton A, Reid L, McKerchar CE, Morris BJ, Pratt JA (2005). Impairment in perceptual attentional set-shifting following PCP administration: a rodent model of set-shifting deficits in schizophrenia. Psychopharmacology (Berlin) 179: 77–84.
Article CAS Google Scholar
- Evenden JL (1999a). The pharmacology of impulsive behaviour in rats VII: the effects of serotonergic agonists and antagonists on responding under a discrimination task using unreliable visual stimuli. Psychopharmacology (Berlin) 146: 422–431.
Article CAS Google Scholar
- Evenden JL (1999b). Varieties of impulsivity. Psychopharmacology (Berlin) 146: 348–361.
Article CAS Google Scholar
- Feenstra MG, Botterblom MH, van Uum JF (2002). Behavioral arousal and increased dopamine efflux after blockade of NMDA-receptors in the prefrontal cortex are dependent on activation of glutamatergic neurotransmission. Neuropharmacology 42: 752–763.
Article CAS PubMed Google Scholar
- Forster EA, Cliffe IA, Bill DJ, Dover GM, Jones D, Reilly Y et al (1995). A pharmacological profile of the selective silent 5-HT1A receptor antagonist, WAY-100635. Eur J Pharmacol 281: 81–88.
Article CAS PubMed Google Scholar
- Frith CD (1987). The positive and negative symptoms of schizophrenia reflect impairments in the perception and initiation of action. Psychol Med 17: 631–648.
Article CAS PubMed Google Scholar
- Goff DC, Coyle JT (2001). The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 158: 1367–1377.
Article CAS PubMed Google Scholar
- Goldberg TE, Weinberger DR (1994). Schizophrenia, training paradigms, and the Wisconsin Card Sorting Test redux. Schizophr Res 11: 291–296 (Review).
Article CAS PubMed Google Scholar
- Granhoff MI, Lee C, Jackson A, Patel K, Martinez Y, Ashby Jr CR et al (1992). The interaction of 5-HT1A and 5-HT2 receptors in the rat medial prefrontal cortex: behavioural studies. Neuroscience Abstract Vol 19, ed. Neuroscience Sf., pp 1980.
- Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000). Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20: 1208–1215.
Article CAS PubMed PubMed Central Google Scholar
- Hajos M, Gartside SE, Varga V, Sharp T (2003). In vivo inhibition of neuronal activity in the rat ventromedial prefrontal cortex by midbrain-raphe nuclei: role of 5-HT1A receptors. Neuropharmacology 45: 72–81.
Article CAS PubMed Google Scholar
- Harrison AA, Everitt BJ, Robbins TW (1997a). Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology (Berlin) 133: 329–342.
Article CAS Google Scholar
- Harrison AA, Everitt BJ, Robbins TW (1997b). Doubly dissociable effects of median- and dorsal-raphe lesions on the performance of the five-choice serial reaction time test of attention in rats. Behav Brain Res 89: 135–149.
Article CAS PubMed Google Scholar
- Harvey PD, Keefe RS (2001). Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am J Psychiatry 158: 176–184.
Article CAS PubMed Google Scholar
- Harvey PD, Geyer MA, Robbins TW, Krystal JH (2003a). Cognition in schizophrenia: from basic science to clinical treatment. Psychopharmacology (Berlin) 169: 213–214.
Article CAS Google Scholar
- Harvey PD, Green MF, McGurk SR, Meltzer HY (2003b). Changes in cognitive functioning with risperidone and olanzapine treatment: a large-scale, double-blind, randomized study. Psychopharmacology (Berlin) 169: 404–411.
Article CAS Google Scholar
- Higgins GA, Ballard TM, Huwyler J, Kemp JA, Gill R (2003a). Evaluation of the NR2B-selective NMDA receptor antagonist Ro 63-1908 on rodent behaviour: evidence for an involvement of NR2B NMDA receptors in response inhibition. Neuropharmacology 44: 324–341.
Article CAS PubMed Google Scholar
- Higgins GA, Enderlin M, Haman M, Fletcher PJ (2003b). The 5-HT2A receptor antagonist M100,907 attenuates motor and ‘impulsive-type’ behaviours produced by NMDA receptor antagonism. Psychopharmacology (Berlin) 170: 309–319.
Article CAS Google Scholar
- Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ et al (1994). International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 46: 157–203.
CAS PubMed Google Scholar
- Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O'Laughlin IA, Meltzer HY (2001). 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76: 1521–1531.
Article CAS PubMed Google Scholar
- Jackson ME, Homayoun H, Moghaddam B (2004). NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci USA 101: 8467–8472.
Article CAS PubMed PubMed Central Google Scholar
- Jakab RL, Goldman-Rakic PS (1998). 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 95: 735–740.
Article CAS PubMed PubMed Central Google Scholar
- Jakab RL, Goldman-Rakic PS (2000). Segregation of serotonin 5-HT2A and 5-HT3 receptors in inhibitory circuits of the primate cerebral cortex. J Comp Neurol 417: 337–348.
Article CAS PubMed Google Scholar
- Javitt DC, Zukin SR (1991). Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308.
Article CAS PubMed Google Scholar
- Jentsch JD, Roth RH (1999). The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20: 201–225.
Article CAS PubMed Google Scholar
- Kay SR, Sevy S (1990). Pyramidical model of schizophrenia. Schizophr Bull 16: 537–545.
Article CAS PubMed Google Scholar
- Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ et al (1996). Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. J Pharmacol Exp Ther 277: 968–981.
CAS PubMed Google Scholar
- Konradi C, Heckers S (2003). Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97: 153–179.
Article CAS PubMed PubMed Central Google Scholar
- Koskinen T, Ruotsalainen S, Puumala T, Lappalainen R, Koivisto E, Mannisto PT et al (2000). Activation of 5-HT2A receptors impairs response control of rats in a five-choice serial reaction time task. Neuropharmacology 39: 471–481.
Article CAS PubMed Google Scholar
- Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51: 199–214.
Article CAS PubMed Google Scholar
- Kuroki T, Ichikawa J, Dai J, Meltzer HY (1996). R(+)-8-OH-DPAT, a 5-HT1A receptor agonist, inhibits amphetamine-induced serotonin and dopamine release in rat medial prefrontal cortex. Brain Res 743: 357–361.
Article CAS PubMed Google Scholar
- Kurtz MM, Ragland JD, Bilker W, Gur RC, Gur RE (2001). Comparison of the continuous performance test with and without working memory demands in healthy controls and patients with schizophrenia. Schizophr Res 48: 307–316.
Article CAS PubMed Google Scholar
- Le Pen G, Grottick AJ, Higgins GA, Moreau JL (2003). Phencyclidine exacerbates attentional deficits in a neurodevelopmental rat model of schizophrenia. Neuropsychopharmacology 28: 1799–1809.
Article CAS PubMed Google Scholar
- Lehmann J, Schneider J, McPherson S, Murphy DE, Bernard P, Tsai C et al (1987). CPP, a selective _N_-methyl-D-aspartate (NMDA)-type receptor antagonist: characterization in vitro and in vivo. J Pharmacol Exp Ther 240: 737–746.
CAS PubMed Google Scholar
- Liegeois JF, Ichikawa J, Meltzer HY (2002). 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947: 157–165.
Article CAS PubMed Google Scholar
- Lyon N, Gerlach J (1988). Perseverative structuring of responses by schizophrenic and affective disorder patients. J Psychiatr Res 22: 261–277.
Article CAS PubMed Google Scholar
- Martin P, Carlsson ML, Hjorth S (1998). Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. Neuroreport 9: 2985–2988.
Article CAS PubMed Google Scholar
- Meltzer HY, McGurk SR (1999). The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25: 233–255.
Article CAS PubMed Google Scholar
- Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003). Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27: 1159–1172.
Article CAS PubMed Google Scholar
- Mirjana C, Baviera M, Invernizzi RW, Balducci C (2004). The serotonin 5-HT2A receptors antagonist M100907 prevents impairment in attentional performance by NMDA receptor blockade in the rat prefrontal cortex. Neuropsychopharmacology 29: 1637–1647.
Article CAS PubMed Google Scholar
- Mishkin M (1964). Perseveration of central sets after frontal lesions in monkeys. In: Warren JM, Akert K (eds). The Frontal Granular Cortex and Behaviour. McGraw-Hill: New York.
Google Scholar
- Mobini S, Chiang TJ, Ho MY, Bradshaw CM, Szabadi E (2000). Effects of central 5-hydroxytryptamine depletion on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology (Berlin) 152: 390–397.
Article CAS Google Scholar
- Moghaddam B, Adams BW (1998). Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281: 1349–1352.
Article CAS PubMed Google Scholar
- Moghaddam B, Adams B, Verma A, Daly D (1997). Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17: 2921–2927.
Article CAS PubMed PubMed Central Google Scholar
- Muir JL, Everitt BJ, Robbins TW (1996). The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb Cortex 6: 470–481.
Article CAS PubMed Google Scholar
- Murphy ER, Dalley JW, Robbins TW (2005). Local glutamate receptor antagonism in the rat prefrontal cortex disrupts response inhibition in a visuospatial attentional task. Psychopharmacology (Berlin) 179: 99–107.
Article CAS Google Scholar
- Orzack MH, Kornetsky C (1966). Attention dysfunction in chronic schizophrenia. Arch Gen Psychiatry 14: 323–326.
Article CAS PubMed Google Scholar
- Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993). Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. Brain 116(Part 5): 1159–1175.
Article PubMed Google Scholar
- Passetti F, Chudasama Y, Robbins TW (2002). The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions. Cereb Cortex 12: 1254–1268.
Article PubMed Google Scholar
- Passetti F, Levita L, Robbins TW (2003b). Sulpiride alleviates the attentional impairments of rats with medial prefrontal cortex lesions. Behav Brain Res 138: 59–69.
Article CAS PubMed Google Scholar
- Paxinos G, Watson C (1982). The Rat Brain in Stereotaxic Coordinates. Academic Press: Sydney.
Google Scholar
- Peroutka SJ (1986). Pharmacological differentiation and characterization of 5-HT1A, 5-HT1B, and 5-HT1C binding sites in rat frontal cortex. J Neurochem 47: 529–540.
Article CAS PubMed Google Scholar
- Przegalinski E, Filip M (1997). Stimulation of serotonin (5-HT)1A receptors attenuates the locomotor, but not the discriminative, effects of amphetamine and cocaine in rats. Behav Pharmacol 8: 699–706.
Article CAS PubMed Google Scholar
- Puig MV, Celada P, Diaz-Mataix L, Artigas F (2003). In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex 13: 870–882.
Article PubMed Google Scholar
- Puumala T, Sirvio J (1998). Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience 83: 489–499.
Article CAS PubMed Google Scholar
- Rasmusson AM, Goldstein LE, Deutch AY, Bunney BS, Roth RH (1994). 5-HT1a agonist +/-8-OH-DPAT modulates basal and stress-induced changes in medial prefrontal cortical dopamine. Synapse 18: 218–224.
Article CAS PubMed Google Scholar
- Robbins TW (1998). Dissociating executive functions of the prefrontal cortex. In: Robberts AC, Robbins TW, Weiskrantz L (eds). The Prefrontal Cortex: Executive and Cognitive Functions. Oxford University Press: Oxford, New York. pp 117–130.
Chapter Google Scholar
- Robbins TW (2000). Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133: 130–138.
Article CAS PubMed Google Scholar
- Robbins TW (2002). The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berlin) 163: 362–380.
Article CAS Google Scholar
- Roberts AC, De Salvia MA, Wilkinson LS, Collins P, Muir JL, Everitt BJ et al (1994). 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci 14: 2531–2544.
Article CAS PubMed PubMed Central Google Scholar
- Rodefer JS, Murphy ER, Baxter MG (2005). PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 21: 1070–1076.
Article PubMed Google Scholar
- Sakaue M, Somboonthum P, Nishihara B, Koyama Y, Hashimoto H, Baba A et al (2000). Postsynaptic 5-hydroxytryptamine(1A) receptor activation increases in vivo dopamine release in rat prefrontal cortex. Br J Pharmacol 129: 1028–1034.
Article CAS PubMed PubMed Central Google Scholar
- Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004). Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14: 1100–1109.
Article PubMed Google Scholar
- Sesack SR, Bunney BS (1989). Pharmacological characterization of the receptor mediating electrophysiological responses to dopamine in the rat medial prefrontal cortex: a microiontophoretic study. J Pharmacol Exp Ther 248: 1323–1333.
CAS PubMed Google Scholar
- Shallice T (1982). Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 298: 199–209.
Article CAS PubMed Google Scholar
- Sharp T, Backus LI, Hjorth S, Bramwell SR, Grahame-Smith DG (1990). Further investigation of the in vivo pharmacological properties of the putative 5-HT1A antagonist, BMY 7378. Eur J Pharmacol 176: 331–340.
Article CAS PubMed Google Scholar
- Soubrié P (1986). Reconciling the role of central serotonin neurons in human and animal behaviour. Behav Brain Sci 9: 319–364.
Article Google Scholar
- Steinbusch HWM (1984). Serotonin-immunoreactive neurons and their projections in the CNS. In: Bjorklund A, Hokfelt T, Kuhar MJ (eds). Handbook of Chemical Neuroanatomy. Elsevier Science: Amsterdam. pp 68–125.
Google Scholar
- Tanaka E, North RA (1993). Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69: 1749–1757.
Article CAS PubMed Google Scholar
- Thierry AM, Deniau JM, Chevalier G, Ferron A, Glowinski J (1983). An electrophysiological analysis of some afferent and efferent pathways of the rat prefrontal cortex. Prog Brain Res 58: 257–261.
Article CAS PubMed Google Scholar
- Verma A, Moghaddam B (1996). NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16: 373–379.
Article CAS PubMed PubMed Central Google Scholar
- Warburton EC, Harrison AA, Robbins TW, Everitt BJ (1997). Contrasting effects of systemic and intracerebral infusions of the 5-HT1A receptor agonist 8-OH-DPAT on spatial short-term working memory in rats. Behav Brain Res 84: 247–258.
Article CAS PubMed Google Scholar
- Williams GV, Rao SG, Goldman-Rakic PS (2002). The physiological role of 5-HT2A receptors in working memory. J Neurosci 22: 2843–2854.
Article CAS PubMed PubMed Central Google Scholar
- Winer BJ (1971). Statistical Principles in Experimental Design. McGraw-Hill: Tokyo.
Google Scholar
- Winstanley CA, Chudasama Y, Dalley JW, Theobald DE, Glennon JC, Robbins TW (2003). Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats. Psychopharmacology (Berlin) 167: 304–317.
Article CAS Google Scholar
- Winstanley CA, Theobald DE, Dalley JW, Glennon JC, Robbins TW (2004). 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berlin) 176: 376–385.
Article CAS Google Scholar
- Zahrt J, Taylor JR, Mathew RG, Arnsten AF (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17: 8528–8535.
Article CAS PubMed PubMed Central Google Scholar
- Zhou FM, Hablitz JJ (1999). Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex. J Neurophysiol 82: 2989–2999.
Article CAS PubMed Google Scholar