Conditional activation of FGFR1 in the prostate epithelium induces angiogenesis with concomitant differential regulation of Ang-1 and Ang-2 (original) (raw)
American Cancer Society (2006). Cancer Facts and Figures 2006. American Cancer Society: Atlanta, GA.
Bergers G, Benjamin LE . (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer3: 401–410. ArticleCASPubMed Google Scholar
Bicknell R, Harris AL . (2004). Novel angiogenic signaling pathways and vascular targets. Annu Rev Pharmacol Toxicol44: 219–238. ArticleCASPubMed Google Scholar
Bikfalvi A, Klein S, Pintucci G, Rifkin DB . (1997). Biological roles of fibroblast growth factor-2. Endocr Rev18: 26–45. CASPubMed Google Scholar
Dery MA, Michaud MD, Richard DE . (2005). Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol37: 535–540. ArticleCASPubMed Google Scholar
Doll JA, Reiher FK, Crawford SE, Pins MR, Campbell SC, Bouck NP . (2001). Thrombospondin-1, vascular endothelial growth factor and fibroblast growth factor-2 are key functional regulators of angiogenesis in the prostate. Prostate49: 293–305. ArticleCASPubMed Google Scholar
Dorkin TJ, Robinson MC, Marsh C, Neal DE, Leung HY . (1999). aFGF immunoreactivity in prostate cancer and its co-localization with bFGF and FGF8. J Pathol189: 564–569. ArticleCASPubMed Google Scholar
Foley KP, Leonard MW, Engel JD . (1993). Quantitation of RNA using the polymerase chain reaction. Trends Genet9: 380–385. ArticleCASPubMed Google Scholar
Folkman J . (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med285: 1182–1186. ArticleCASPubMed Google Scholar
Folkman J, Hanahan D . (1991). Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp22: 339–347. CASPubMed Google Scholar
Folkman J, Shing Y . (1992). Angiogenesis. J Biol Chem267: 10931–10934. CASPubMed Google Scholar
Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol16: 4604–4613. ArticleCASPubMedPubMed Central Google Scholar
Foster BA, Kaplan PJ, Greenberg NM . (1999). Characterization of the FGF axis and identification of a novel FGFR1iiic isoform during prostate cancer progression in the TRAMP model. Prostate Cancer Prostatic Dis2: 76–82. ArticleCASPubMed Google Scholar
Freeman KW, Welm BE, Gangula RD, Rosen JM, Ittmann M, Greenberg NM et al. (2003). Inducible prostate intraepithelial neoplasia with reversible hyperplasia in conditional FGFR1-expressing mice. Cancer Res63: 8256–8263. CASPubMed Google Scholar
Giri D, Ropiquet F, Ittmann M . (1999). Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res5: 1063–1071. CASPubMed Google Scholar
Gnanapragasam VJ, Robinson MC, Marsh C, Robson CN, Hamdy FC, Leung HY . (2003). FGF8 isoform b expression in human prostate cancer. Br J Cancer88: 1432–1438. ArticleCASPubMedPubMed Central Google Scholar
Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO et al. (1995). Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA92: 3439–3443. ArticleCASPubMed Google Scholar
Greenberg NM, DeMayo FJ, Sheppard PC, Barrios R, Lebovitz R, Finegold M et al. (1994). The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol Endocrinol8: 230–239. CASPubMed Google Scholar
Hayward SW, Baskin LS, Haughney PC, Cunha AR, Foster BA, Dahiya R et al. (1996). Epithelial development in the rat ventral prostate, anterior prostate and seminal vesicle. Acta Anat (Basel)155: 81–93. ArticleCAS Google Scholar
Hobbs S, Jitrapakdee S, Wallace JC . (1998). Development of a bicistronic vector driven by the human polypeptide chain elongation factor 1alpha promoter for creation of stable mammalian cell lines that express very high levels of recombinant proteins. Biochem Biophys Res Commun252: 368–372. ArticleCASPubMed Google Scholar
Huss WJ, Barrios RJ, Foster BA, Greenberg NM . (2003). Differential expression of specific FGF ligand and receptor isoforms during angiogenesis associated with prostate cancer progression. Prostate54: 8–16. ArticlePubMed Google Scholar
Javerzat S, Auguste P, Bikfalvi A . (2002). The role of fibroblast growth factors in vascular development. Trends Mol Med8: 483–489. ArticleCASPubMed Google Scholar
Jin C, Wang F, Wu X, Yu C, Luo Y, McKeehan WL . (2004). Directionally specific paracrine communication mediated by epithelial FGF9 to stromal FGFR3 in two-compartment premalignant prostate tumors. Cancer Res64: 4555–4562. ArticleCASPubMed Google Scholar
Kim I, Kim JH, Ryu YS, Jung SH, Nah JJ, Koh GY . (2000). Characterization and expression of a novel alternatively spliced human angiopoietin-2. J Biol Chem275: 18550–18556. ArticleCASPubMed Google Scholar
Kwabi-Addo B, Ozen M, Ittmann M . (2004). The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer11: 709–724. ArticleCASPubMed Google Scholar
Lind AJ, Wikstrom P, Granfors T, Egevad L, Stattin P, Bergh A . (2005). Angiopoietin 2 expression is related to histological grade, vascular density, metastases, and outcome in prostate cancer. Prostate62: 394–399. ArticlePubMed Google Scholar
Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods25: 402–408. ArticleCAS Google Scholar
Mohammadi M, Froum S, Hamby JM, Schroeder MC, Panek RL, Lu GH et al. (1998). Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J17: 5896–5904. ArticleCASPubMedPubMed Central Google Scholar
Nakamura T, Mochizuki Y, Kanetake H, Kanda S . (2001). Signals via FGF receptor 2 regulate migration of endothelial cells. Biochem Biophys Res Commun289: 801–806. ArticleCASPubMed Google Scholar
Tait CR, Jones PF . (2004). Angiopoietins in tumours: the angiogenic switch. J Pathol204: 1–10. ArticleCASPubMed Google Scholar
Thomson AA . (2001). Role of androgens and fibroblast growth factors in prostatic development. Reproduction121: 187–195. ArticleCASPubMed Google Scholar
Wang F, McKeehan K, Yu C, Ittmann M, McKeehan WL . (2004). Chronic activity of ectopic type 1 fibroblast growth factor receptor tyrosine kinase in prostate epithelium results in hyperplasia accompanied by intraepithelial neoplasia. Prostate58: 1–12. ArticleCASPubMed Google Scholar
Wang GL, Semenza GL . (1995). Purification and characterization of hypoxia-inducible factor 1. J Biol Chem270: 1230–1237. ArticleCASPubMed Google Scholar
Wang S, Garcia AJ, Wu M, Lawson DA, Witte ON, Wu H . (2006). Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA103: 1480–1485. ArticleCASPubMed Google Scholar
Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J . (1993). Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol143: 401–409. CASPubMedPubMed Central Google Scholar
Weidner N, Semple JP, Welch WR, Folkman J . (1991). Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med324: 1–8. ArticleCASPubMed Google Scholar
Welm BE, Freeman KW, Chen M, Contreras A, Spencer DM, Rosen JM . (2002). Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland. J Cell Biol157: 703–714. ArticleCASPubMedPubMed Central Google Scholar
Winter SF, Cooper AB, Greenberg NM . (2003). Models of metastatic prostate cancer: a transgenic perspective. Prostate Cancer Prostatic Dis6: 204–211. ArticleCASPubMed Google Scholar
Zhang J, Thomas TZ, Kasper S, Matusik RJ . (2000). A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology141: 4698–4710. ArticleCASPubMed Google Scholar
Zhang L, Yang N, Park JW, Katsaros D, Fracchioli S, Cao G et al. (2003). Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res63: 3403–3412. CASPubMed Google Scholar