Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? (original) (raw)
Barbieri CE, Tang LJ, Brown KA, Pietenpol JA . (2006). Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res66: 7589–7597. ArticleCAS Google Scholar
Bensaad K, Le Bras M, Unsal K, Strano S, Blandino G, Tominaga O et al. (2003). Change of conformation of the DNA-binding domain of p53 is the only key element for binding of and interference with p73. J Biol Chem278: 10546–10555. ArticleCAS Google Scholar
Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, Trigiante G et al. (2003). p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell3: 387–402. ArticleCAS Google Scholar
Bergamaschi D, Samuels Y, Jin B, Duraisingham S, Crook T, Lu X . (2004). ASPP1 and ASPP2: common activators of p53 family members. Mol Cell Biol24: 1341–1350. ArticleCAS Google Scholar
Brunner HG, Hamel BC, Bokhoven HvH . (2002). P63 gene mutations and human developmental syndromes. Am J Med Genet112: 284–290. Article Google Scholar
Chipuk JE, Green DR . (2006). Dissecting p53-dependent apoptosis. Cell Death Differ13: 994–1002. ArticleCAS Google Scholar
Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science265: 346–355. ArticleCAS Google Scholar
Davison TS, Vagner C, Kaghad M, Ayed A, Caput D, Arrowsmith CH . (1999). p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J Biol Chem274: 18709–18714. ArticleCAS Google Scholar
Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. (2006). Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell10: 191–202. ArticleCAS Google Scholar
Di Como CJ, Gaiddon C, Prives C . (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol19: 1438–1449. ArticleCAS Google Scholar
Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell7: 363–373. ArticleCAS Google Scholar
Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F et al. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature416: 560–564. ArticleCAS Google Scholar
Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . (2001). A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol21: 1874–1887. ArticleCAS Google Scholar
Gannon JV, Greaves R, Iggo R, Lane DP . (1990). Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J9: 1595–1602. ArticleCAS Google Scholar
Gorina S, Pavletich NP . (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science274: 1001–1005. ArticleCAS Google Scholar
Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze-Bergkamen H et al. (2005). TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J24: 2458–2471. ArticleCAS Google Scholar
Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE et al. (2000). AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA97: 5462–5467. ArticleCAS Google Scholar
Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin WG . (2003). Chemosensitivity linked to p73 function. Cancer Cell3: 403–410. ArticleCAS Google Scholar
Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A et al. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell90: 809–819. ArticleCAS Google Scholar
Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell119: 861–872. ArticleCAS Google Scholar
Lanza M, Marinari B, Papoutsaki M, Giustizieri ML, D'Alessandra Y, Chimenti S et al. (2006). Cross-talks in the p53 family: DeltaNp63 is an anti-apoptotic target for DeltaNp73alpha and p53 gain-of-function mutants. Cell Cycle5. ArticleCAS Google Scholar
Laptenko O, Prives C . (2006). Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ13: 951–961. ArticleCAS Google Scholar
Lokshin M, Li Y, Gaiddon C, Prives C . (2007). p53 and p73 display common and distinct requirements for sequence specific binding to DNA. Nucleic Acids Res35: 340–352. ArticleCAS Google Scholar
Lokshin M, Tanaka T, Prives C . (2005). Transcriptional regulation by p53 and p73. Cold Spring Harb Symp Quant Biol70: 121–128. ArticleCAS Google Scholar
Marin MC, Jost CA, Brooks LA, Irwin MS, O'Nions J, Tidy JA et al. (2000). A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet25: 47–54. ArticleCAS Google Scholar
Murray-Zmijewski F, Lane DP, Bourdon JC . (2006). p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ13: 962–972. ArticleCAS Google Scholar
Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. (2004). Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell119: 847–860. ArticleCAS Google Scholar
Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I et al. (1998). Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med4: 839–843. ArticleCAS Google Scholar
Resnick MA, Inga A . (2003). Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci USA100: 9934–9939. ArticleCAS Google Scholar
Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW . (2006). p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell9: 45–56. ArticleCAS Google Scholar
Samuels-Lev Y, O'Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S et al. (2001). ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell8: 781–794. ArticleCAS Google Scholar
Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A et al. (2002). Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem277: 18817–18826. ArticleCAS Google Scholar
Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A et al. (2001). Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem276: 15164–15173. ArticleCAS Google Scholar
Strano S, Munarriz E, Rossi M, Cristofanelli B, Shaul Y, Castagnoli L et al. (2000). Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem275: 29503–29512. ArticleCAS Google Scholar
Urist M, Tanaka T, Poyurovsky MV, Prives C . (2004). p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev18: 3041–3054. ArticleCAS Google Scholar
van Bokhoven H, Brunner HG . (2002). Splitting p63. Am J Hum Genet71: 1–13. ArticleCAS Google Scholar
Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature408: 307–310. ArticleCAS Google Scholar
Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer2: 594–604. ArticleCAS Google Scholar
Willis AC, Pipes T, Zhu J, Chen X . (2003). p73 can suppress the proliferation of cells that express mutant p53. Oncogene22: 5481–5495. ArticleCAS Google Scholar
Wiman KG . (2006). Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ13: 921–926. ArticleCAS Google Scholar
Wong KB, DeDecker BS, Freund SM, Proctor MR, Bycroft M, Fersht AR . (1999). Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc Natl Acad Sci USA96: 8438–8442. ArticleCAS Google Scholar
Wu G, Nomoto S, Hoque MO, Dracheva T, Osada M, Lee CC et al. (2003). DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res63: 2351–2357. CASPubMed Google Scholar
Yang A, Kaghad M, Caput D, McKeon F . (2002). On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet18: 90–95. Article Google Scholar
Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V et al. (1998). p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell2: 305–316. ArticleCAS Google Scholar
Zeng SX, Dai MS, Keller DM, Lu H . (2002). SSRP1 functions as a co-activator of the transcriptional activator p63. EMBO J21: 5487–5497. ArticleCAS Google Scholar