Hormone-refractory prostate cancer: a multi-step and multi-event process (original) (raw)
Boring CC, Squires TS, Tong T, Montgomery S Cancer statistics, 1994. CA Cancer J Clin 1994 44 7–26 CASPubMed Google Scholar
Mettlin CJ, Murphy GP, Ho R, Menck HR The National Cancer Data Base report on longitudinal observations on prostate cancer. Cancer 1996 77 2162–2166 CASPubMed Google Scholar
Krongrad A, Lai H, Lai S Survival after radical prostatectomy. JAMA 1997 278 44–46 CASPubMed Google Scholar
Huggins C, Hodges CV Studies on prostate cancer: effect of castration, estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941 4 293–297 Google Scholar
Huggins C, Hodges CV Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin 1972 22 232–240 CASPubMed Google Scholar
Isaacs JT, Coffey DS Adaptation versus selection as the mechanism responsible for the relapse of prostatic cancer to androgen ablation therapy as studied in the Dunning R-3327-H adenocarcinoma. Cancer Res 1981 41 5070–5075 CASPubMed Google Scholar
Isaacs JT The biology of hormone refractory prostate cancer. Why does it develop? Urol Clin North Am 1999 26 263–273 CASPubMed Google Scholar
van der Kwast TH et al Androgen receptors in endocrine-therapy-resistant human prostate. Int J Cancer 1991 48 189–193 CASPubMed Google Scholar
Culig Z et al Synergistic activation of androgen receptor by androgen and luteinizing hormone-releasing hormone in prostatic carcinoma cells. Prostate 1997 32 106–114 CASPubMed Google Scholar
Gil-Diez de Medina S et al Modulation of cytokeratin subtype, EGF receptor, and androgen receptor expression during progression of prostate cancer. Hum Pathol 1998 29 1005–1012 CASPubMed Google Scholar
Hockenbery DM et al BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci USA 1991 88 6961–6965 CASPubMedPubMed Central Google Scholar
Colombel M et al Androgen suppressed apoptosis is modified in p53 deficient mice. Oncogene 1995 10 1269–1274 CASPubMed Google Scholar
Cardillo M et al Resistance to apoptosis and up regulation of Bcl-2 in benign prostatic hyperplasia after androgen deprivation. J Urol 1997 158 212–216 CASPubMed Google Scholar
Keshgegian AA, Johnston E, Cnaan A Bcl-2 oncoprotein positivity and high MIB-1 (Ki-67) proliferative rate are independent predictive markers for recurrence in prostate carcinoma. Am J Clin Pathol 1998 110 443–449 CASPubMed Google Scholar
Huang A et al p53 and bcl-2 immunohistochemical alterations in prostate cancer treated with radiation therapy. Urology 1998 51 346–351 CASPubMed Google Scholar
Beham AW et al Molecular correlates of bcl-2-enhanced growth following androgen-ablation in prostate carcinoma cells in vivoInt J Mol Med 1998 1 953–959 CASPubMed Google Scholar
Zhang X et al Abnormal prostate development in C3(1)-bcl-2 transgenic mice. Prostate 1997 32 16–26 PubMed Google Scholar
Bruckheimer EM et al Bcl-2 accelerates multistep prostate carcinogenesis in vivoOncogene 2000 19 5251–5258 CASPubMed Google Scholar
Westin P, Brandstrom A, Damber JE, Bergh A Castration plus oestrogen treatment induces but castration alone suppresses epithelial cell apoptosis in an androgen-sensitive rat prostatic adenocarcinoma. Br J Cancer 1995 72 140–145 CASPubMedPubMed Central Google Scholar
Rampino N et al Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997 275 967–969 CASPubMed Google Scholar
Levine AJ, Momand J, Finlay CA The p53 tumour suppressor gene. Nature 1991 351 453–456 CASPubMed Google Scholar
Gartel AL, Serfas MS, Tyner AL p21--negative regulator of the cell cycle. Proc Soc Exp Biol Med 1996 213 138–149 CASPubMed Google Scholar
Miyashita T et al Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivoOncogene 1994 9 1799–1805 CASPubMed Google Scholar
McCurrach ME et al _bax_-Deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci USA 1997 94 2345–2349 CASPubMedPubMed Central Google Scholar
Girinsky T et al Attenuated response of p53 and p21 in primary cultures of human prostatic epithelial cells exposed to DNA-damaging agents. Cancer Res 1995 55 3726–3731 CASPubMed Google Scholar
Nigro JM et al Mutations in the p53 gene occur in diverse human tumour types. Nature 1989 342 705–708 CASPubMed Google Scholar
Heidenberg HB et al The role of the p53 tumor suppressor gene in prostate cancer: a possible biomarker? Urology 1996 48 971–979 CASPubMed Google Scholar
Stricker HJ et al Determining prognosis of clinically localized prostate cancer by immunohistochemical detection of mutant p53. Urology 1996 47 366–369 CASPubMed Google Scholar
Bauer JJ et al p53 Nuclear protein expression is an independent prognostic marker in clinically localized prostate cancer patients undergoing radical prostatectomy. Clin Cancer Res 1995 1 1295–1300 CASPubMed Google Scholar
Yang G et al Clustered p53 immunostaining: a novel pattern associated with prostate cancer progression. Clin Cancer Res 1996 2 399–401 CASPubMed Google Scholar
Harris CC, Hollstein M Clinical implications of the p53 tumor-suppressor gene. New Engl J Med 1993 329 1318–1827 CASPubMed Google Scholar
Berner A et al Hormone resistant prostatic adenocarcinoma. An evaluation of prognostic factors in pre- and post-treatment specimens. Br J Cancer 1993 68 380–384 CASPubMedPubMed Central Google Scholar
Thomas DJ et al p53 expression and clinical outcome in prostate cancer. Br J Urol 1993 72 778–781 CASPubMed Google Scholar
Montenarh M Biochemical properties of the growth suppressor/oncoprotein p53. Oncogene 1992 7 1673–1680 CASPubMed Google Scholar
Vogelstein B, Kinzler KW p53 Function and dysfunction. Cell 1992 70 523–526 CASPubMed Google Scholar
Hollstein M, Sidransky D, Vogelstein B, Harris CC p53 Mutations in human cancers. Science 1991 253 49–53 CASPubMed Google Scholar
Jost CA, Marin MC, Kaelin WG Jr p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature 1997 389 191–194 CASPubMed Google Scholar
Bentel JM, Tilley WD Androgen receptors in prostate cancer. J Endocrinol 1996 151 1–11 CASPubMed Google Scholar
Wilding G Endocrine control of prostate cancer. Cancer Surv 1995 23 43–62 CASPubMed Google Scholar
Magi-Galluzzi C et al Heterogeneity of androgen receptor content in advanced prostate cancer. Mod Pathol 1997 10 839–845 CASPubMed Google Scholar
Visakorpi T et alin vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature Genet 1995 9 401–406 CASPubMed Google Scholar
Culig Z et al Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 1994 54 5474–5478 CASPubMed Google Scholar
Taplin ME et al Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. New Engl J Med 1995 332 1393–1398 CASPubMed Google Scholar
Veldscholte J et al A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 1990 173 534–540 CASPubMed Google Scholar
Shen R et al Transdifferentiation of cultured human prostate cancer cells to a neuroendocrine cell phenotype in a hormone-depleted medium. Urol Oncol 1997 3 67–75 CASPubMed Google Scholar
Suzuki H et al Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: relation to antiandrogen withdrawal syndrome. Prostate 1996 29 153–158 CASPubMed Google Scholar
Fenton MA et al Functional characterization of mutant androgen receptors from androgen-independent prostate cancer. Clin Cancer Res 1997 3 1383–1388 CASPubMed Google Scholar
Kuil CW, Brinkmann AO Androgens, antiandrogens and androgen receptor abnormalities. Eur Urol 1996 29 (Suppl 2): 78–82 Google Scholar
Tan J et al Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endocrinol 1997 11 450–459 CASPubMed Google Scholar
Akakura K et al Effects of intermittent androgen suppression on androgen-dependent tumors. Apoptosis and serum prostate-specific antigen. Cancer 1993 71 2782–2790 CASPubMed Google Scholar
Yuan S et al Androgen-induced inhibition of cell proliferation in an androgen-insensitive prostate cancer cell line (PC-3) transfected with a human androgen receptor complementary DNA. Cancer Res 1993 53 1304–1311 CASPubMed Google Scholar
Umekita Y, Hiipakka RA, Kokontis JM, Liao S Human prostate tumor growth in athymic mice: inhibition by androgens and stimulation by finasteride. Proc Natl Acad Sci USA 1996 93 11802–11807 CASPubMedPubMed Central Google Scholar
Edwards A et al Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 1992 12 241–253 CASPubMed Google Scholar
Giovannucci E et al The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997 94 3320–3323 CASPubMedPubMed Central Google Scholar
Stanford JL et al Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res 1997 57 1194–1198 CASPubMed Google Scholar
Takahashi H et al Prevalence of androgen receptor gene mutations in latent prostatic carcinomas from Japanese men. Cancer Res 1995 55 1621–1624 CASPubMed Google Scholar
Makridakis N et al A prevalent missense substitution that modulates activity of prostatic steroid 5alpha-reductase. Cancer Res 1997 57 1020–1022 CASPubMed Google Scholar
Krammer PH et al The role of APO-1-mediated apoptosis in the immune system. Immunol Rev 1994 142 175–191 CASPubMed Google Scholar
Chinnaiyan AM, Dixit VM Portrait of an executioner: the molecular mechanism of FAS/APO-1-induced apoptosis. Semin Immunol 1997 9 69–76 CASPubMed Google Scholar
Bookstein R et al Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci USA 1990 87 7762–7766 CASPubMedPubMed Central Google Scholar
Phillips SM et al Loss of the retinoblastoma susceptibility gene (RB1) is a frequent and early event in prostatic tumorigenesis. Br J Cancer 1994 70 1252–1257 CASPubMedPubMed Central Google Scholar
Brooks JD, Bova GS, Isaacs WB Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate 1995 26 35–39 CASPubMed Google Scholar
Buttyan R et al Enhanced expression of the c-myc protooncogene in high-grade human prostate cancers. Prostate 1987 11 327–337 CASPubMed Google Scholar
Fleming WH et al Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res 1986 46 1535–1538 CASPubMed Google Scholar
Westin P, Stattin P, Damber JE, Bergh A Castration therapy rapidly induces apoptosis in a minority and decreases cell proliferation in a majority of human prostatic tumors. Am J Pathol 1995 146 1368–1375 CASPubMedPubMed Central Google Scholar
Hsu B et al Evidence that c-myc mediated apoptosis does not require wild-type p53 during lymphomagenesis. Oncogene 1995 11 175–179 CASPubMed Google Scholar
Gao X et al Somatic mutations of the WAF1/CIP1 gene in primary prostate cancer. Oncogene 1995 11 1395–1398 CASPubMed Google Scholar
Byrne RL et al The expression of waf-1, p53 and bcl-2 in prostatic adenocarcinoma. Br J Urol 1997 79 190–195 CASPubMed Google Scholar
Park DJ et al Molecular analysis of the INK4 family of genes in prostate carcinomas. J Urol 1997 157 1995–1999 CASPubMed Google Scholar
Watanabe M et al International comparison on ras gene mutations in latent prostate carcinoma. Int J Cancer 1994 58 174–178 CASPubMed Google Scholar
Anwar K et al Presence of ras oncogene mutations and human papillomavirus DNA in human prostate carcinomas. Cancer Res 1992 52 5991–5996 CASPubMed Google Scholar
Thompson TC, Southgate J, Kitchener G, Land H Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 1989 56 917–930 CASPubMed Google Scholar
Thompson TC et al Loss of p53 function leads to metastasis in ras+_myc_-initiated mouse prostate cancer. Oncogene 1995 10 869–879 CASPubMed Google Scholar
Bova GS, Isaacs WB Review of allelic loss and gain in prostate cancer. World J Urol 1996 14 338–346 CASPubMed Google Scholar
Carter BS et al Allelic loss of chromosomes 16q and 10q in human prostate cancer. Proc Natl Acad Sci USA 1990 87 8751–8755 CASPubMedPubMed Central Google Scholar
Massenkeil G et al P53 mutations and loss of heterozygosity on chromosomes 8p, 16q, 17p, and 18q are confined to advanced prostate cancer. Anticancer Res 1994 14 2785–2790 CASPubMed Google Scholar
Visakorpi T et al Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res 1995 55 342–347 CASPubMed Google Scholar
Trybus TM et al Distinct areas of allelic loss on chromosomal regions 10p and 10q in human prostate cancer. Cancer Res 1996 56 2263–2267 CASPubMed Google Scholar
Teng DH et al MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 1997 57 5221–5225 CASPubMed Google Scholar
Di Sant'Agnese PA Neuroendocrine differentiation in human prostatic carcinoma. Hum Pathol 1992 23 287–296 CASPubMed Google Scholar
Gkonos PJ, Krongrad A, Roos BA Neuroendocrine peptides in the prostate. Urol Res 1995 23 81–87 CASPubMed Google Scholar
Bonkhoff H et al Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic, and neoplastic human prostate. Prostate 1991 19 91–98 CASPubMed Google Scholar
Abrahamsson PA Neuroendocrine differentiation in the human prostate gland. Curr Trends Exp Endocrinol 1994 2 21–40 Google Scholar
Di Sant' Agnese PA, Cockett AT The prostatic endocrine-paracrine (neuroendocrine) regulatory system and neuroendocrine differentiation in prostatic carcinoma: a review and future directions in basic research. J Urol 1994 152 1927–1931 CAS Google Scholar
Krijnen JL et al The prognostic value of neuroendocrine differentiation in adenocarcinoma of the prostate in relation to progression of disease after endocrine therapy. J Urol 1997 158 171–174 CASPubMed Google Scholar
Guate JL et al Neuroendocrine cells in benign prostatic hyperplasia and prostatic carcinoma: effect of hormonal treatment. Urol Int 1997 59 149–153 CASPubMed Google Scholar
Weinstein MH, Partin AW, Veltri RW, Epstein JI Neuro-endocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum Pathol 1996 27 683–687 CASPubMed Google Scholar
Angelsen A et al Neuroendocrine differentiation in carcinomas of the prostate: do neuroendocrine serum markers reflect immunohistochemical findings? Prostate 1997 30 1–6 CASPubMed Google Scholar
Tarle M, Rados N Investigation on serum neurone-specific enolase in prostate cancer diagnosis and monitoring: comparative study of a multiple tumor marker assay. Prostate 1991 19 23–33 CASPubMed Google Scholar
Bang YJ et al Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP. Proc Natl Acad Sci USA 1994 91 5330–5334 CASPubMedPubMed Central Google Scholar
Qiu Y, Robinson D, Pretlow TG, Kung HJ Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3′-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc Natl Acad Sci USA 1998 95 3644–3649 CASPubMedPubMed Central Google Scholar
Takayama H et alFas gene mutations in prostatic intraepithelial neoplasia and concurrent carcinoma: analysis of laser capture microdissected specimens. Lab Invest 2001 81 283–288 CASPubMed Google Scholar
Diaz JI et al Cytometric analysis of Fas and Bcl-2 expression in normal prostatic epithelium and prostate cancer. Urol Oncol 2000 5 149–154 CASPubMed Google Scholar