A protein taxonomy based on secondary structure (original) (raw)

References

  1. Minor, D.L. Jr. & Kim, P.S. Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734 ( 1996).
    Article CAS Google Scholar
  2. Itahaki, L.S., Otzen, D.E. & Fersht, A.R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation–condensation mechanism for protein folding. J. Mol. Biol. 254, 260–288 (1995).
    Article Google Scholar
  3. Shao, X. & Matthews, C.R. Single-tryptophan mutants of monomeric tryptophan repressor: optical spectroscopy reveals nonnative structure in a model for an early folding intermediate. Biochemistry 37, 7850–7858 (1998).
    Article CAS Google Scholar
  4. Clark, P.L., Liu, Z.-P., Rizo, J. & Gierasch, L.M. Cavity formation before stable hydrogen bonding in the folding of a beta-clam protein. Nature Struct. Biol. 4, 883–886 (1997).
    Article CAS Google Scholar
  5. Yee, D.P., Chan, H.S., Havel, T.F. & Dill, K.A. Does compactness induce secondary structure in proteins? A study of poly-alanine chains computed by distance geometry. J. Mol. Biol. 241, 557–573 (1994).
    Article CAS Google Scholar
  6. Havel, T.F., Crippen, G.M. & Kuntz, I.D. Effects of distance constraints on macromolecular conformation. II. Simulation of experimental results and theoretical predictions. Biopolymers 18, 73–81 (1979).
    Article CAS Google Scholar
  7. Reymond, M.T., Merutka, G., Dyson, H.J. & Wright, P.E. Folding propensities of peptide fragments of myoglobin. Protein Sci. 6, 706–716 (1997).
    Article CAS Google Scholar
  8. Dyson, H.J. et al. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding II. Plastocyanin. J. Mol. Biol. 226, 819–835 (1992).
    Article CAS Google Scholar
  9. Srinivasan, R. & Rose, G.D. LINUS—a simple algorithm to predict the fold of a protein. Proteins Struct. Funct. Genet. 22, 81–99 (1995).
    Article CAS Google Scholar
  10. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).
    CAS PubMed Google Scholar
  11. Madej, T., Gibrat, J-F. & Bryant, S.H. Threading a database of protein cores. Proteins Struct. Funct. Genet. 23, 356– 369 (1995).
    Article CAS Google Scholar
  12. Mitchell, E.M., Artymiuk, P.J., Rice, D.W. & Willett, P. Use of techniques derived from graph theory to compare secondary structure motifs in proteins. J. Mol. Biol. 212, 151 –166 (1990).
    Article CAS Google Scholar
  13. Di Francesco, V., Garnier, J. & Munson, P.J. Protein topology recognition from secondary structure sequences: application of the hidden markov models to the alpha class proteins. J. Mol. Biol. 267, 446– 463 (1997).
    Article CAS Google Scholar
  14. Russell, R.B., Copley, R.R. & Barton, G.J. Protein fold recognition by mapping predicted secondary structures. J. Mol. Biol. 259, 349– 365 (1996).
    Article CAS Google Scholar
  15. Rost, B., Schneider, R. & Sander, C. Protein fold recognition by prediction-based threading. J Mol Biol 270, 471–480 (1997).
    Article CAS Google Scholar
  16. Rice, D.W. & Eisenberg, D. A 3D–1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence. J. Mol. Biol. 267, 1026– 1038 (1997).
    Article CAS Google Scholar
  17. Aurora, R. & Rose, G.D. Seeking an ancient enzyme in Methanococcus jannaschii using ORF, a program based on predicted secondary structure comparisons. Proc. Natl. Acad. Sci. USA 95 , 2818–2823 (1998).
    Article CAS Google Scholar
  18. Holm, L. & Sander, C. Mapping the protein universe. Science 273, 595–603 ( 1996).
    Article CAS Google Scholar
  19. Needleman, S.B. & Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443– 453 (1970).
    Article CAS Google Scholar
  20. Sander, C. & Schneider, R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins Struct. Funct. Genet. 9, 56–68 (1991).
    Article CAS Google Scholar
  21. Doolittle, R.F. The multiplicity of domains in proteins. Annu. Rev. Biochem. 64, 287–314 (1995).
    Article CAS Google Scholar
  22. Doolittle, R.F. Of Urfs and Orfs 1-1–103 (University Science Books, Sausalito, California; 1986).
    Google Scholar
  23. Altschul, S.F., Boguski, M.S., Gish, W. & Wootton, J.C. Issues in searching molecular sequence databases. Nat. Genet. 6, 119–129 (1994).
    Article CAS Google Scholar
  24. Smith, H.O., Annau, T.M. & Chandrasegaran, S. Finding sequence motifs in groups of functionally related proteins. Proc Natl Acad Sci USA 87, 826 –830 (1990).
    Article CAS Google Scholar
  25. Lipman, D.J. & Pearson, W.R. Rapid and sensitive protein similarity searches. Science 227, 1435– 1441 (1985).
    Article CAS Google Scholar
  26. Neuwald, A.F., Liu, J.S., Lipman, D.J. & Lawrence, C.E. Extracting protein alignment models from the sequence database. Nucleic Acids Res. 25, 1665–1677 ( 1997).
    Article CAS Google Scholar
  27. Henikoff, S. & Henikoff, J.G. Embedding strategies for effective use of information from multiple sequence alignments. Protein Sci. 6, 698–705 ( 1997).
    Article CAS Google Scholar
  28. Luthy, R., Bowie, J.U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 356, 83– 85 (1992).
    Article CAS Google Scholar
  29. Gibrat, J-F., Madej, T. & Bryant, S.H. Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6, 377–385 (1996).
    Article CAS Google Scholar
  30. Hobohm, U. & Sander, C. Enlarged representative set of protein structures. Protein Sci. 3, 522– 524 (1994).
    Article CAS Google Scholar
  31. Bernstein, F.C. et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).
    Article CAS Google Scholar
  32. Levitt, M. & Chothia, C. Structural patterns in globular proteins. Nature 261, 552– 558 (1976).
    Article CAS Google Scholar
  33. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    Article CAS Google Scholar
  34. Saitou, N. & Nei, M. The neighborhood-joining method: a new method for reconstructing phylogenic trees. Mol. Biol. Evol. 4, 406–424 (1987).
    CAS PubMed Google Scholar
  35. Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Prot. Chem. 34, 168–340 ( 1981).
    Google Scholar
  36. Orengo, C.A., Michie, A.D., Jones, D.T., Swindells, M.B. & Thornton, J.M. CATH—a hierarchic classification of protein domain structures. Structure 5, 1093–1108 (1997).
    Article CAS Google Scholar
  37. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).
    Article CAS Google Scholar
  38. King, J. Genetic analysis of protein folding pathways. Biotechnology 4, 297–303 (1986).
    CAS Google Scholar
  39. Lattman, E.E. & Rose, G.D. Protein folding — what's the question? Proc. Natl. Acad. Sci. USA 90, 439–441 (1993).
    Article CAS Google Scholar
  40. Aurora, R., Creamer, T.P., Srinivasan, R. & Rose, G.D. Local interactions in protein folding: lessons from the α-helix. J. Biol. Chem. 272, 1413–1416 (1997).
    Article CAS Google Scholar
  41. Baldwin, R.L. & Rose, G.D. Is protein folding hierarchic? I. Local structure and peptide folding. Trends Biochem. Sci. 24, 26–33 (1999).
    Article CAS Google Scholar
  42. Holm, L. & Sander, C. An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins Struct. Funct. Genet. 28, 72–82 (1997).
    Article CAS Google Scholar
  43. Waterman, M.S. Introduction to computational biology: maps, sequences, and genomes (Chapman & Hall, London;1995).
    Book Google Scholar
  44. Cohen, J. & Farach, M. In Proc. of eighth ann. ACM–SIAM symp. on discrete algorithms. (Association for Computing Machinery, New York; 410–416; 1997).
    Google Scholar

Download references