Functional changes in the structure of the SRP GTPase on binding GDP and Mg2+GDP (original) (raw)

References

  1. Walter, P. & Johnson, A.E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu. Rev. Cell Biol. 10, 87–119 (1994).
    Article CAS Google Scholar
  2. Miller, J.D., Bernstein, H.D. & Walter, P. Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor. Nature 367, 657–659 (1994).
    Article CAS Google Scholar
  3. Kusters, R. et al. The functioning of the SRP receptor FtsY in protein-targeting in E. coli is correlated with its ability to bind and hydrolyse GTP. FEBS Lett. 372, 253–258 (1995).
    Article CAS Google Scholar
  4. Powers, T. & Walter, P. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16, 4880–4886 (1997).
    Article CAS Google Scholar
  5. Powers, T. & Walter, P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science 269, 1422–1424 (1995).
    Article CAS Google Scholar
  6. Hauser, S., Bacher, G., Dobberstein, B. & Lütcke, H. A complex of the signal sequence binding protein and the SRP RNA promotes translocation of nascent proteins. EMBO J. 14, 5485–5493 (1995).
    Article CAS Google Scholar
  7. Rapiejko, P.J. & Gilmore, R. Signal sequence recognition and targeting of ribosomes to the endoplasmic reticulum by the signal recognition particle do not require GTP. Mol. Biol. Cell 5, 887–897 (1994).
    Article CAS Google Scholar
  8. Connolly, T. & Gillmore, R. The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57, 599–610 (1989).
    Article CAS Google Scholar
  9. Zopf, D., Bernstein, H., Johnson, A.E. & Walter, P. The methionine-rich domain of the 54 kD protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511–4517 (1990).
    Article CAS Google Scholar
  10. Römisch, K., Webb, J., Lingelbäch, K., Gausepohl, H. & Dobberstein, B. The 54-kD protein of signal recognition particle contains a methionine-rich RNA binding domain. J. Cell Biol. 111, 1793–1802 (1990).
    Article Google Scholar
  11. Lütcke, H., High, S., Römisch, K., Ashford, A.J. & Dobberstein, B. The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J. 11, 1543–1551 (1992).
    Article Google Scholar
  12. Jagath, J.R., Rodnina, M.V., Lentzen, G. & Wintermeyer, W. Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli. Biochemistry 37, 15408–15413 (1998).
    Article CAS Google Scholar
  13. Moser, C., Mol, O., Goody, R.S. & Sinning, I. The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain. Proc. Natl. Acad. Sci. USA 94, 11339–11344 (1997).
    Article CAS Google Scholar
  14. Bacher, G., Lütcke, H., Jungnickel, B., Rapoport, T.A. & Dobberstein, B. Regulation by the ribosome of the GTPase of the signal-recognition particle during protein targeting. Nature 381, 248–251 (1996).
    Article CAS Google Scholar
  15. Miller, J.D., Wilhelm, H., Gierasch, L., Gilmore, R. & Walter, P. GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 366, 351–354 (1993).
    Article CAS Google Scholar
  16. Rapiejko, P.J. & Gilmore, R. Empty site forms of the SRP54 and SR alpha GTPases mediate targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Cell 89, 703–713 (1997).
    Article CAS Google Scholar
  17. Freymann, D.M., Keenan, R.J., Stroud, R.M. & Walter, P. Structure of the conserved GTPase domain of the signal recognition particle. Nature 385, 361–364 (1997).
    Article CAS Google Scholar
  18. Montoya, G., Svensson, C., Luirink, J. & Sinning, I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385, 365–369 (1997).
    Article CAS Google Scholar
  19. Zheng, N. & Gierasch, L.M. Domain interactions in E. coli SRP: stabilization of M domain by RNA is Required for effective signal sequence modulation of NG domain. Mol. Cell 1, 1–20 (1997).
    Article Google Scholar
  20. Zopf, D., Bernstein, H.D. & Walter, P. GTPase domain of the 54-kD subunit of the mammalian signal recognition particle is required for protein translocation but not for signal sequence binding. J. Cell Biol. 120, 1113–1121 (1993).
    Article CAS Google Scholar
  21. Newitt, J.A. & Bernstein, H.D. The N-domain of the signal recognition particle 54-kDa subunit promotes efficient signal sequence binding. Eur. J. Biochem. 245, 720–729 (1997).
    Article CAS Google Scholar
  22. Bourne, H.R., Sanders, D.A. & McCormick, F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132 (1990).
    Article CAS Google Scholar
  23. Kjeldgaard, M., Nyborg, J. & Clark, B.F.C. The GTP binding motif: variations on a theme. FASEB J. 10, 1347–1368 (1996).
    Article CAS Google Scholar
  24. Sprang, S.R. G Protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678 (1997).
    Article CAS Google Scholar
  25. Kjeldgaard, M. & Nyborg, J. Refined structure of elongation factor Tu from Escherichia coli. J. Mol. Biol. 223, 721–742 (1992).
    Article CAS Google Scholar
  26. Tong, L.A., de Vos, A.M., Milburn, M.V. & Kim, S.H. Crystal structures at 2.2 Å resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. Mol. Biol. 217, 503–516 (1991).
    Article CAS Google Scholar
  27. Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374, 378–381 (1995).
    Article CAS Google Scholar
  28. Al-Karadaghi, S., Ævarsson, A., Garber, M., Zheltonosova, J. & Liljas, A. The structure of the elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure 4, 555–565 (1996).
    Article CAS Google Scholar
  29. Czworkowski, J., Wang, J., Steitz, T.A. & Moore, P.B. The crystal structure of elongation factor G complexed with GDP, at 2.7 Å resolution. EMBO J. 13, 3661–3668 (1994).
    Article CAS Google Scholar
  30. Mixon, M.B. et al. Tertiary and quaternary structural changes in Giα1 induced by GTP hydrolysis. Science 270, 954–960 (1995).
    Article CAS Google Scholar
  31. Keenan, R.J., Freymann, D.M., Walter, P. & Stroud, R.M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181–191 (1998).
    Article CAS Google Scholar
  32. Berghuis, A.M., Lee, E., Raw, A.S., Gilman, A.G. & Sprang, S.R. Structure of the GDP-Pi complex of Gly203→Ala Gialpha1: a mimic of the ternary product complex of Galpha-catalyzed GTP hydrolysis. Structure 4, 1277–1290 (1996).
    Article CAS Google Scholar
  33. Farmery, M., Macao, B., Larsson, T. & Samuelsson, T. Binding of GTP and GDP induces a significant conformational change in the GTPase domain of Ffh, a bacterial homologue of the SRP 54 kDa subunit. Biochim. Biophys. Acta 1385, 61–68 (1998).
    Article CAS Google Scholar
  34. Bohm, A., Gaudet, R. & Sigler, P.B. Structural aspects of heterotrimeric G-protein signaling. Curr. Opin. Biotechnol. 8, 480–487 (1997).
    Article CAS Google Scholar
  35. Onrust, R. et al. Receptor and betagamma binding sites in the alpha subunit of the retinal G protein transducin. Science 275, 381–384 (1997).
    Article CAS Google Scholar
  36. Teng, T.-Y. Mounting of crystals for macromolecular crystallography in a free-standing thin film. J. Appl. Crystallogr. 23, 387–391 (1990).
    Article CAS Google Scholar
  37. Otwinowski, Z. Oscillation data reduction program. In Data collection and processing (eds Sawyer, L., Isaacs, N.W. & Bailey, S.) 55–62 (SERC Daresbury Laboratory, Warrington, United Kingdom; 1993).
    Google Scholar
  38. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).
    Article Google Scholar
  39. Brünger, A.T. X-PLOR: a system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).
    Google Scholar
  40. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  41. Jiang, J.-S. & Brünger, A.T. Protein hydration observed by X-ray diffraction. J. Mol. Biol. 243, 100–115 (1994).
    Article CAS Google Scholar
  42. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).
    Article CAS Google Scholar
  43. Glusker, J.P. Structural aspects of metal liganding to functional groups of proteins. Adv. Protein Chem. 42, 1–76 (1991).
    Article CAS Google Scholar
  44. Kleywegt, G.J. & Jones, T.A. Detecting folding motifs and similarities in protein structures. Methods Enzymol. 277, 525–545 (1997).
    Article CAS Google Scholar
  45. Evans, S.V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138 (1993).
    Article CAS Google Scholar
  46. Ihara, K. et al. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J. Biol. Chem. 273, 9656–9666 (1998).
    Article CAS Google Scholar
  47. Hirshberg, M., Stockley, R.W., Dodson, G. & Webb, M.R. The crystal structure of human rac1, a member of the Rho family complexed with a GTP analogue. Nature Struct. Biol. 4, 147–151 (1997).
    Article CAS Google Scholar
  48. Diederichs, K. & Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nature Struct. Biol. 4, 269–275 (1997).
    Article CAS Google Scholar

Download references