The base of the proteasome regulatory particle exhibits chaperone-like activity (original) (raw)
Baumeister, W., Walz, J., Zühl, F. & Seemüller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell92, 367–380 (1998). ArticleCAS Google Scholar
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem.67, 425–479 (1998). ArticleCAS Google Scholar
Tanaka, K. Molecular biology of the proteasome. Biochem. Biophys. Res. Commun.247, 537–541 ( 1998). ArticleCAS Google Scholar
Glickman, M. H., Rubin, D. M., Fried, V. A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome . Mol. Cell. Biol.18, 3149– 3162 (1998). ArticleCAS Google Scholar
Löwe, J. et al. Crystal structure of the 20 S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science268, 533–539 (1995). Article Google Scholar
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution . Nature386, 463–471 (1997). ArticleCAS Google Scholar
Walz, J. et al. 26S Proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol.121, 19– 29 (1998). ArticleCAS Google Scholar
Larsen, C. N. & Finley, D. Protein translocation channels in the proteasome and other proteases. Cell91, 431–434 (1997). ArticleCAS Google Scholar
Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell94, 615–623 (1998). ArticleCAS Google Scholar
Buckau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell92, 351– 366 (1998). Article Google Scholar
Wickner, S. et al. A molecular chaperone, ClpA, functions like DnaK and DnaJ . Proc. Natl Acad. Sci. USA91, 12218– 12222 (1994). ArticleCAS Google Scholar
Wawrzynow, A. et al. The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease is a novel molecular chaperone. EMBO J.14, 1867–1877 (1995). ArticleCAS Google Scholar
Leonhard, K., Stiegler, A., Neupert, W. & Langer, T. Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature398, 348–351 ( 1999). ArticleCAS Google Scholar
Murakami, Y. et al. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature360, 597– 599 (1992). ArticleCAS Google Scholar
Buchner, J., Grallert, H. & Jakob, U. Analysis of chaperone function using citrate synthase as nonnative substrate protein. Methods Enzymol.290 , 323–338 (1998). ArticleCAS Google Scholar
Zhi, W., Srere, P. A. & Evans, C. T. Conformational stability of pig citrate synthase and some active-site mutants. Biochemistry30, 9281–9286 (1991). ArticleCAS Google Scholar
Buchner, J. et al. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry30, 1586– 1591 (1991). ArticleCAS Google Scholar
Bose, S., Weikl, T., Buegl, H. & Buchner, J. Chaperone function of Hsp90-associated proteins. Science274, 1715–1717 (1996). ArticleCAS Google Scholar
Ehrnsperger, M., Graeber, S., Gaestel, M. & Buchner, J. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J.16, 221– 229 (1997). ArticleCAS Google Scholar
Netzer, W. J. & Hartl, F. U. Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends Biochem. Sci.23, 68–73 ( 1998). ArticleCAS Google Scholar
Xu, Z., Horwich, A. L. & Siegler, P. B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature388, 741– 750 (1997). ArticleCAS Google Scholar
Henke, W. et al. Comparison of human COP9 signalosome and 26S proteasome ‘lid’ . Mol. Biol. Rep.26, 29– 34 (1999). ArticleCAS Google Scholar
Pickart, C. M. Targeting of substrates to the 26S proteasome. FASEB J.11, 1055–1066 (1997). ArticleCAS Google Scholar
Akiyama, Y., Ehrmann, M., Kihara, A. & Ito, K. Polypeptide binding of Escherichia coli FtsH (HflB). Mol. Microbiol.28, 803–812 (1998). ArticleCAS Google Scholar
Ciechanover, A., Finley, D. & Varshavsky, A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell37, 57–66 (1984). ArticleCAS Google Scholar
Schmidtke, G. et al. Analysis of mammalian 20S proteasome biogenesis: the maturation of (β-subunits is an ordered two-step mechanism involving autocatalysis . EMBO J.15, 6887–6898 (1996). ArticleCAS Google Scholar
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680–685 (1970). ArticleCAS Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–254 ( 1976). ArticleCAS Google Scholar
West, S. M., Kelly, S. M. & Price, N. C. The unfolding and attempted refolding of citrate synthase from pig heart. Biochim. Biophys. Acta1037 , 332–336 (1990). ArticleCAS Google Scholar