Nonet, M. L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci.17, 8061–8073 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tempia, F., Bravin, M. & Strata, P. Postsynaptic currents and short-term synaptic plasticity in Purkinje cells grafted onto an uninjured adult cerebellar cortex. Eur. J. Neurosci.8, 2690–2701 (1996). ArticleCASPubMed Google Scholar
Eshhar, N., Petralia, R. S., Winters, C. A., Niedzielski, A. S. & Wenthold, R. J. The segregation and expression of glutamate receptor subunits in cultured hippocampal neurons. Neuroscience57, 943–964 (1993). ArticleCASPubMed Google Scholar
Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci.18, 1693–1703 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sillar, K. T. & Roberts, A. Segregation of NMDA and non-NMDA receptors at separate synaptic contacts: evidence from spontaneous EPSPs in Xenopus embryo spinal neurons. Brain Res.545, 24–32 (1991). ArticleCASPubMed Google Scholar
Nimnual, A. S., Chang, N. S., Ross, A. F., Gelman, M. S. & Prives, J. M. Identification of phosphorylation sites on AChR delta-subunit associated with dispersal of AChR clusters on the surface of muscle cells. Biochemistry37, 14823–14832 (1998). ArticleCASPubMed Google Scholar
Nishizaki, T. & Sumikawa, K. Effects of PKC and PKA phosphorylation on desnsitization of nicotinic acetylcholine receptors. Brain Res.812, 242–245 (1998). ArticleCASPubMed Google Scholar
Paradiso, K. & Brehm, P. Long-term desensitization of nicotinic acteylcholine receptors is regulated via protein kinase A-mediated phosphorylation. J. Neurosci.18, 9227– 9237 (1998). ArticleCASPubMedPubMed Central Google Scholar
Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature375, 400–404 (1995). ArticleCASPubMed Google Scholar
De Koninck, P. & Cooper, E. Differential regulation of neuronal nicotinic ACh receptor subunit genes in cultured neonatal rat sympathetic neurons: specific induction of alpha 7 by membrane depolarization through a Ca2+/calmodulin-dependent kinase pathway. J. Neurosci.15, 7966–7978 (1995). ArticleCASPubMedPubMed Central Google Scholar
McIntire, S. L., Jorgensen, E. & Horvitz, H. R. Genes required for GABA function in Caenorhabditis elegans. Nature364, 334– 337 (1993). ArticleCASPubMed Google Scholar
McIntire, S. L., Jorgensen, E., Kaplan, J. & Horvitz, H. R. The GABAergic nervous system of Caenorhabditis elegans. Nature364, 337–341 (1993). ArticleCASPubMed Google Scholar
Lewis, J. A., Wu, C. H., Levine, J. H. & Berg, H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience5, 967–989 (1980). ArticleCASPubMed Google Scholar
Bamber, B. A., Beg, A. A., Twyman, R. E. & Jorgensen, E. M. The C. elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci.19, 5348– 5359 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lackner, M. R., Kornfeld, K., Miller, L. M., Horvitz, H. R. & Kim, S. K. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Devel.8, 160– 173 (1994). ArticleCASPubMed Google Scholar
Fleming, J. T. et al. Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J. Neurosci.17, 5843–5857 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lewis, J. A., Wu, C. H., Berg, H. & Levine, J. H. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics95, 905–928 (1980). CASPubMedPubMed Central Google Scholar
Robertson, S. J. & Martin, R. J. Levamisole-activated single-channel currents from muscle of the nematode parasite Ascaris suum. Br. J. Pharmacol.108, 170– 178 (1993). ArticleCASPubMedPubMed Central Google Scholar
Zoli, M., Lena, C., Picciotto, M. R. & Changeux, J. P. Identification of four classes of brain nicotinic receptors using β2 mutant mice. J. Neurosci.18, 4461– 4472 (1998). ArticleCASPubMedPubMed Central Google Scholar
Walrond, J. P. & Stretton, A. O. Excitatory and inhibitory activity in the dorsal musculature of the nematode Ascaris evoked by single dorsal excitatory motonerons. J. Neurosci.5, 16–22 (1985). ArticleCASPubMedPubMed Central Google Scholar
Moss, B. L. & Role, L. W. Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo. J. Neurosci.13, 13–28 (1993). ArticleCASPubMedPubMed Central Google Scholar
Hartman, D. S. & Claudio, T. Coexpression of two distinct muscle acetylcholine receptor alpha-subunits during development. Nature343, 372–375 (1990). ArticleCASPubMed Google Scholar
Owens, J. L. & Kullberg, R. Three conductance classes of nicotinic acetylcholine receptors are expressed in developing amphibian skeletal muscle. J. Neurosci.9, 2575–2580 (1989). ArticleCASPubMedPubMed Central Google Scholar
Gardette, R., Listerud, M. D., Brussard, A. B. & Role, L. W. Developmental changes in transmitter sensitivity and synaptic transmission in embryonic chicken sympathetic neurons innervated in vitro. Dev. Biol.147, 83–95 (1991). ArticleCASPubMed Google Scholar
Hume, R. I. & Honig, M. G. Physiological properties of newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons. J. Neurobiol.22, 249– 262 (1991). ArticleCASPubMed Google Scholar
Role, L. W. Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels. Curr. Opin. Neurobiol.2, 254–262 (1992). ArticleCASPubMed Google Scholar
Byerly, L. & Masuda, M. O. Voltage-clamp analysis of the potassium current that produces a negative-going action potential in Ascaris muscle. J. Physiol. (Lond.)288, 263–284 (1979). CASPubMed Central Google Scholar