One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction (original) (raw)

References

  1. Chalfie, M. & Jorgensen, E. M. C. elegans neuroscience: genetics to genome. Trends Genet. 14, 506–512 (1998).
    Article CAS PubMed Google Scholar
  2. Jorgensen, E. M. & Nonet, M. L. Neuromuscular junctions in the nematode C. elegans. Dev. Biol. 6, 207–220 (1995).
    Article CAS Google Scholar
  3. Raizen, D. M. & Avery, L. Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron 12, 483–495 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  4. Nonet, M. L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8061–8073 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  5. Tempia, F., Bravin, M. & Strata, P. Postsynaptic currents and short-term synaptic plasticity in Purkinje cells grafted onto an uninjured adult cerebellar cortex. Eur. J. Neurosci. 8, 2690–2701 (1996).
    Article CAS PubMed Google Scholar
  6. Eshhar, N., Petralia, R. S., Winters, C. A., Niedzielski, A. S. & Wenthold, R. J. The segregation and expression of glutamate receptor subunits in cultured hippocampal neurons. Neuroscience 57, 943–964 (1993).
    Article CAS PubMed Google Scholar
  7. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  8. Sillar, K. T. & Roberts, A. Segregation of NMDA and non-NMDA receptors at separate synaptic contacts: evidence from spontaneous EPSPs in Xenopus embryo spinal neurons. Brain Res. 545, 24–32 (1991).
    Article CAS PubMed Google Scholar
  9. Nimnual, A. S., Chang, N. S., Ross, A. F., Gelman, M. S. & Prives, J. M. Identification of phosphorylation sites on AChR delta-subunit associated with dispersal of AChR clusters on the surface of muscle cells. Biochemistry 37, 14823–14832 (1998).
    Article CAS PubMed Google Scholar
  10. Nishizaki, T. & Sumikawa, K. Effects of PKC and PKA phosphorylation on desnsitization of nicotinic acetylcholine receptors. Brain Res. 812, 242–245 (1998).
    Article CAS PubMed Google Scholar
  11. Paradiso, K. & Brehm, P. Long-term desensitization of nicotinic acteylcholine receptors is regulated via protein kinase A-mediated phosphorylation. J. Neurosci. 18, 9227– 9237 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  12. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).
    Article CAS PubMed Google Scholar
  13. De Koninck, P. & Cooper, E. Differential regulation of neuronal nicotinic ACh receptor subunit genes in cultured neonatal rat sympathetic neurons: specific induction of alpha 7 by membrane depolarization through a Ca2+/calmodulin-dependent kinase pathway. J. Neurosci. 15, 7966–7978 (1995).
    Article CAS PubMed PubMed Central Google Scholar
  14. McIntire, S. L., Jorgensen, E. & Horvitz, H. R. Genes required for GABA function in Caenorhabditis elegans. Nature 364, 334– 337 (1993).
    Article CAS PubMed Google Scholar
  15. McIntire, S. L., Jorgensen, E., Kaplan, J. & Horvitz, H. R. The GABAergic nervous system of Caenorhabditis elegans. Nature 364, 337–341 (1993).
    Article CAS PubMed Google Scholar
  16. Lewis, J. A., Wu, C. H., Levine, J. H. & Berg, H. Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5, 967–989 (1980).
    Article CAS PubMed Google Scholar
  17. Bamber, B. A., Beg, A. A., Twyman, R. E. & Jorgensen, E. M. The C. elegans unc-49 locus encodes multiple subunits of a heteromultimeric GABA receptor. J. Neurosci. 19, 5348– 5359 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  18. Lewis, J. A. et al. Cholinergic receptor mutants of the nematode Caenorhabditis elegans. J. Neurosci. 7, 3059– 3071 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  19. Lackner, M. R., Kornfeld, K., Miller, L. M., Horvitz, H. R. & Kim, S. K. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Devel. 8, 160– 173 (1994).
    Article CAS PubMed Google Scholar
  20. Fleming, J. T. et al. Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J. Neurosci. 17, 5843–5857 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  21. Lewis, J. A., Wu, C. H., Berg, H. & Levine, J. H. The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95, 905–928 (1980).
    CAS PubMed PubMed Central Google Scholar
  22. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
    CAS PubMed PubMed Central Google Scholar
  23. Robertson, S. J. & Martin, R. J. Levamisole-activated single-channel currents from muscle of the nematode parasite Ascaris suum. Br. J. Pharmacol. 108, 170– 178 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  24. Zoli, M., Lena, C., Picciotto, M. R. & Changeux, J. P. Identification of four classes of brain nicotinic receptors using β2 mutant mice. J. Neurosci. 18, 4461– 4472 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  25. Walrond, J. P. & Stretton, A. O. Excitatory and inhibitory activity in the dorsal musculature of the nematode Ascaris evoked by single dorsal excitatory motonerons. J. Neurosci. 5, 16–22 (1985).
    Article CAS PubMed PubMed Central Google Scholar
  26. Moss, B. L. & Role, L. W. Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo. J. Neurosci. 13, 13–28 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  27. Hartman, D. S. & Claudio, T. Coexpression of two distinct muscle acetylcholine receptor alpha-subunits during development. Nature 343, 372–375 (1990).
    Article CAS PubMed Google Scholar
  28. Owens, J. L. & Kullberg, R. Three conductance classes of nicotinic acetylcholine receptors are expressed in developing amphibian skeletal muscle. J. Neurosci. 9, 2575–2580 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  29. Gardette, R., Listerud, M. D., Brussard, A. B. & Role, L. W. Developmental changes in transmitter sensitivity and synaptic transmission in embryonic chicken sympathetic neurons innervated in vitro. Dev. Biol. 147, 83–95 (1991).
    Article CAS PubMed Google Scholar
  30. Hume, R. I. & Honig, M. G. Physiological properties of newly formed synapses between sympathetic preganglionic neurons and sympathetic ganglion neurons. J. Neurobiol. 22, 249– 262 (1991).
    Article CAS PubMed Google Scholar
  31. Role, L. W. Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels. Curr. Opin. Neurobiol. 2, 254–262 (1992).
    Article CAS PubMed Google Scholar
  32. Byerly, L. & Masuda, M. O. Voltage-clamp analysis of the potassium current that produces a negative-going action potential in Ascaris muscle. J. Physiol. (Lond.) 288, 263–284 (1979).
    CAS PubMed Central Google Scholar

Download references