Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B (original) (raw)
O'Donohoe, N.V. Febrile Convulsions. in Epileptic Syndromes in Infancy, Childhood and Adolescence (eds Roger, J. et al.) 45–52 (John Libby Eurotext LTD, London, 1992). Google Scholar
Nelson, K.B. & Ellenberg, J.H. Febrile Seizures. 360 (Raven Press, New York, 1981). Google Scholar
Rich, S.S., Annegers, J.F., Hauser, W.A. & Anderson, V.E. Complex segregation analysis of febrile convulsions. Am. J. Hum. Genet.41, 249–257 (1987). CASPubMedPubMed Central Google Scholar
Wallace, R.H., Berkovic, S.F., Howell, R.A., Sutherland, G.R. & Mulley, J.C. Suggestion of a major gene for familial febrile convulsions mapping to 8q13-21. J. Med. Genet.33, 308 –312 (1996). ArticleCAS Google Scholar
Johnson, E. et al. Evidence for a novel gene for familial febrile convulsions, FEB2, linked to chromosome 19p in an extended family from the Midwest. Hum. Mol. Genet.7,63–67 ( 1998). ArticleCAS Google Scholar
Scheffer, I.E. & Berkovic, S.F. Generalised epilepsy with febrile seizures plus - a genetic disorder with heterogeneous clinical phenotypes . Brain120, 479–490 (1997). Article Google Scholar
Johnson, W. et al. Pedigree analysis in families with febrile seizures. Am. J. Med. Genet.61, 345–352 ( 1996). ArticleCAS Google Scholar
Ryan, S. Partial epilepsy: Chinks in the armour. Nature Genet. 10, 4–6 (1995). ArticleCAS Google Scholar
Steinlein, O.K. et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy . Nature Genet. 11, 201– 203 (1995). ArticleCAS Google Scholar
Steinlein, O.K. et al. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lob epilepsy. Hum. Mol. Genet. 6, 943–947 (1997). ArticleCAS Google Scholar
Guipponi, M. et al. Linkage mapping of benign familial infantile seizures (BFIC) to chromosome 19q. Hum. Mol. Genet. 6, 473– 477 (1997). ArticleCAS Google Scholar
Makita, N., Sloan-Brown, K., Wedhuis, D.O., Ropers, H.H. & George, A.L. Genomic organisation and chromosomal assignment of the human voltage-gated Na+ channel ß1 subunit gene (SCN1B). Genomics23, 628– 634 (1994). ArticleCAS Google Scholar
Mohrenweiser, H. et al. Regions of sex-specific hypo- and hyper-recombination identified through integration of 180 genetic markers into the metric physical map of human chromosome 19 . Genomics47, 153–162 (1998). ArticleCAS Google Scholar
Isom, L.L. et al. Primary structure and functional expression of the ß1 subunit of the rat brain sodium channel. Science256, 839–842 (1992). ArticleCAS Google Scholar
Macdonald, R.L. & Kelly, K.M. Mechanisms of action of currently prescribed and newly developed antiepileptic drugs. Epilepsia35, S41–S50 (1994). Article Google Scholar
Bulman, D.E. Phenotype variations and newcomers in ion channel disorders. Hum. Mol. Genet. 6, 1679–1685 (1997). ArticleCAS Google Scholar
Makita, N., Bennett, P.B. & George, A.L. Voltage-gated Na+ channel ß 1 subunit mRNA expressed in adult human skeletal muscle, heart, and brain is encoded by a single gene. J. Biol. Chem. 269 , 7571–7578 (1994). CASPubMed Google Scholar
Isom, L.L. et al. Structure and function of the ß2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell83 , 433–442 (1995). ArticleCAS Google Scholar
McCormick, K.A. et al. Molecular determinants of Na+ channel function in the extracellular domain of the ß1 subunit. J. Biol. Chem.273, 3954–3962 (1998). ArticleCAS Google Scholar
Makita, N., Bennett, P.B. & George, A.L., Jr. Molecular determinants of ß 1 subunit-induced gating modulation in voltage-dependent Na+ channels . J. Neurosci. 16, 7117– 7127 (1996). ArticleCAS Google Scholar
McClatchey, A.I. et al. Temperature-sensitive mutations in the III-IV cytoplasmic loop region of the skeletal muscle sodium channel gene in paramyotonia congenita. Cell68, 769–774 ( 1992). ArticleCAS Google Scholar
Berkovic, S.F. Genetics of epilepsy syndromes. in Epilepsy: A Comprehensive Textbook. (eds Engel, J. Jr. & Pedley, T.A.) 217–224 (Lippincott-Raven, Philadelphia, 1997). Google Scholar
Biervert, C. et al. A potassium channel mutation in neonatal human epilepsy. Science279,403–406 ( 1998). ArticleCAS Google Scholar
Charlier, C. et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nature Genet.18, 53– 55 (1998). ArticleCAS Google Scholar
Singh, N. et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nature Genet.18, 25– 29 (1998). ArticleCAS Google Scholar
Fletcher, C.F. et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell87, 607–617 (1996). ArticleCAS Google Scholar
Burgess, D.L., Jones, J.M., Meisler, M.H. & Noebels, J.L. Mutation of the Ca2+ channel ß subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell88, 385–392 ( 1997). ArticleCAS Google Scholar
Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites . Nature380, 152–154 (1996). ArticleCAS Google Scholar
Lathrop, G.M. & Lalouel, J.M. Easy calculations of lod scores and genetic risks on small computers. Am. J. Hum. Genet. 36, 460–465 (1984). CASPubMedPubMed Central Google Scholar
Lathrop, G.M., Lalouel, J.M., Julien, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl Acad. Sci. 81 , 3443–3446 (1984). ArticleCAS Google Scholar