Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling (original) (raw)
References
Spence, P. Obtaining value from the human genome: a challenge for the pharmaceutical industry. Drug Disc. Today3, 179– 188 (1998). ArticleCAS Google Scholar
Simonsen, H. & Lodish, H.F. Cloning by function: expression cloning in mammalian cells. Trends Pharmacol. Sci.15, 437–441 (1994). ArticleCASPubMed Google Scholar
Evans, M.J., Carlton, M.B. & Russ, A.P. Gene trapping and functional genomics. Trends Genet.13, 370–374 (1997). ArticleCASPubMed Google Scholar
Hicks, G.G. et al. Functional genomics in mice by tagged sequence mutagenesis. Nat. Genet.16, 338–344 ( 1997). ArticleCASPubMed Google Scholar
Whitney, M. et al. A genome-wide functional assay of signal transduction in living mammalian cells. Nat. Biotechnol.16, 1329– 1333 (1998). ArticleCASPubMed Google Scholar
Khazak, V., Sadhale, P.P., Woychik, N.A., Brent, R. & Golemis, E.A. Human RNA polymerase II subunit hsRPB7 functions in yeast and influences stress survival and cell morphology. Mol. Cell. Biol.6, 759– 775 (1995). ArticleCAS Google Scholar
Law, S.F. et al. Human enhancer of filamentation 1, a novel p130cas-like docking protein, associates with focal adhesion kinase and induces pseudohyphal growth in Saccharomyces cerevisiae. Mol. Cell. Biol.16, 3327 –3337 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kurjan, J. The pheromone response pathway in Saccharomyces cerevisiae. Annu. Rev. Genet.27, 147–179 (1993). ArticleCASPubMed Google Scholar
Bardwell, L., Cook, J.G., Inouye, C.J. & Thorner, J. Signal propagation and regulation in the mating pheromone response pathway of the yeast Saccharomyces cerevisiae. Dev. Biol.166, 363– 379 (1994). ArticleCASPubMed Google Scholar
Chang, F. & Herskowitz, I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell63, 999–1011 (1990). ArticleCASPubMed Google Scholar
Peter, M. & Herskowitz, I. Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science265, 1228–1231 (1994). ArticleCASPubMed Google Scholar
King, K., Dohlman, H.G., Thorner, J., Caron, M.G. & Lefkowitz, R.J. Control of yeast mating signal transduction by a mammalian β2-adrenergic receptor and G s α subunit. Science250, 121 –123 (1990). ArticleCASPubMed Google Scholar
Stevenson, B.J., Rhodes, N., Errede, B. & Sprague, G.F. Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Dev.6, 1293–1304 (1992). ArticleCASPubMed Google Scholar
Price, L.A., Kajkowski, E.M., Hadcock, J.R., Ozenberger, B.A. & Pausch, M.H. Functional coupling of a mammalian somatostatin receptor to the yeast pheromone response pathway. Mol. Cell. Biol.15, 6188– 6195 (1995). ArticleCASPubMedPubMed Central Google Scholar
Manfredi, J.P. et al. Yeast α mating factor structure-activity relationship derived from genetically selected peptide agonists and antagonists of Ste2p. Mol. Cell. Biol.16, 4700–4709 (1996). ArticleCASPubMedPubMed Central Google Scholar
Stevenson, B.J. et al. Mutation of RGA1, which encodes a putative GTPase-activating protein for the polarity-establishment protein Cdc42p, activates the pheromone-response pathway in the yeast Saccharomyces cerevisiae. Genes Dev.9, 2949–2963 ( 1995). ArticleCASPubMed Google Scholar
Klein, C. et al. Identification of surrogate agonists for the human FPRL-1 receptor by autocrine selection in yeast. Nat. Biotechnol.16, 1334–1337 (1998). ArticleCASPubMed Google Scholar
Beals, C.R., Wilson, C.B. & Perlmutter, R.M. A small multigene family encodes Gi signal-transduction proteins. Proc. Natl. Acad. Sci. USA84, 7886–7890 (1987). ArticleCASPubMedPubMed Central Google Scholar
Sato, M., Ribas, C., Hildebrandt, J.D. & Lanier, S.M. Characterization of a G protein activator in the neuroblastoma glioma cell hybrid NG108-15. J. Biol. Chem.271, 30052 –30060 (1996). ArticleCASPubMed Google Scholar
Schneider, J.C. & Guarente, L. Vectors for expression of cloned genes in yeast: regulation, overproduction, and underproduction. Methods Enzymol.194, 373– 388 (1991). ArticleCASPubMed Google Scholar
Kemppainen, R.J. & Behrend, E.N. Dexamethasone rapidly induces a novel Ras superfamily member-related gene in AtT-20 cells. J. Biol. Chem.273, 3129– 3131 (1998). ArticleCASPubMed Google Scholar
Lee, E., Taussig, R. & Gilman, A.G. The G226A mutant of Gsα highlights the requirement for dissociation of G protein subunits. J. Biol. Chem.267, 1212–1218 ( 1992). CASPubMed Google Scholar
Berman, D.M., Wilkie, T.M. & Gilman, A.G. GAIP and RGS4 are GTPase activating proteins for the Gi subfamily of G protein α subunits. Cell86 , 445–452 (1996). ArticleCASPubMed Google Scholar
Valencia, A., Chardin, P., Wittinghofer, A. & Sander, C. The ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry30, 4637– 4648 (1991). ArticleCASPubMed Google Scholar
Sikorski, R.S. & Boeke, J.D. In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol.194, 302–318 ( 1991). ArticleCASPubMed Google Scholar
Schena, M., Picard, D. & Yamamoto, K.R. Vectors for constitutive and inducible gene expression in yeast. Methods Enzymol.194, 389– 398 (1991). ArticleCASPubMed Google Scholar
Chen, C., Zheng, B., Han, J. & Lin, S.C. Characterization of a novel mammalian RGS protein that binds to G alpha proteins and inhibits pheromone signaling in yeast. J. Biol. Chem.272, 8679–8685 (1997). ArticleCASPubMed Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. in Molecular cloning: a laboratory manual, 2nd edn (Cold Spring Harbor Laboratory Press, New York; 1989). Google Scholar
Ito, H., Fukuda, Y., Murata, K. & Kimora, A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol.153, 163–168 ( 1983). CASPubMedPubMed Central Google Scholar
Sapperstein, S., Berkower, C. & Michaelis, S. Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxylmethyltransferase, and demonstration of its essential role in a-factor export. Mol. Cell. Biol.14, 1438–1449 (1994). ArticleCASPubMedPubMed Central Google Scholar
Rothstein, R. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol.194, 281– 302 (1991). ArticleCASPubMed Google Scholar
Boeke, J.D., Trueheart, J., Natsoulis, G. & Fink, G.R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol.154, 164–195 (1987). ArticleCASPubMed Google Scholar
Dietzel, C. & Kurjan, J. The yeast SCG1 gene: a Gα-like protein implicated in the a- and α-factor response pathway. Cell50, 1001–1010 ( 1987). ArticleCASPubMed Google Scholar
Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics122, 19–27 (1989). CASPubMedPubMed Central Google Scholar
Fowlkes, D.M. et al. Yeast cells engineered to produce pheromone system protein surrogates, and uses thereof. Patent no. 5,789,184 (1998).
Broach, J.R., Li, Y.Y., Wu, L.C.C. & Jayarum, M. in Experimental manipulation of gene expression (ed. Inouye, M.) (Academic Press, New York; 1983). Google Scholar
Strathern, J.N. & Higgins, D.R. Recovery of plasmids from yeast into Escherichia coli: shuttle vectors. Methods Enzymol.194, 319–329 (1991). ArticleCASPubMed Google Scholar
Stueland, C.S., Lew, D.J., Cismowski, M.J. & Reed, S.I. Full activation of p34_CDC28_ histone H1 kinase activity is unable to promote entry into mitosis in checkpoint-arrested cells of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol.13, 3744–3755 (1993). ArticleCASPubMedPubMed Central Google Scholar