Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells (original) (raw)
References
Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell68, 673–682 ( 1992). ArticleCAS Google Scholar
Peters, K.-R., Carley, W. W. & Palade, G. E. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J. Cell Biol.101 , 2233–2238 (1985). ArticleCAS Google Scholar
Engelman, J. A. et al. Molecular genetics of the caveolin gene family: implications for human cancers, diabetes, Alzheimer disease, and muscular dystrophy. Am. J. Hum. Genet.63, 1578–1587 (1998). ArticleCAS Google Scholar
Monier, S. et al. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell6, 911–927 ( 1995). ArticleCAS Google Scholar
Monier, S., Dietzen, D. J., Hastings, W. R., Lublin, D. M. & Kurzchalia, T. V. Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett.388, 143–149 (1996). ArticleCAS Google Scholar
Sargiacomo, M. et al. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl Acad. Sci. USA92 , 9407–9411 (1995). ArticleCAS Google Scholar
Fra, A. M., Williamson, E., Simons, K. & Parton, R. G. De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin . Proc. Natl Acad. Sci. USA92, 8655– 8659 (1995). ArticleCAS Google Scholar
Li, S., Song, K. S., Koh, S. S., Kikuchi, A. & Lisanti, M. P. Baculovirus-based expression of mammalian caveolin in Sf21 insect cells. A model system for the biochemical and morphological study of caveolae biogenesis. J. Biol. Chem.271, 28647–28654 (1996). ArticleCAS Google Scholar
Glenney, J. R. The sequence of human caveolin reveals identity with VIP21, a component of transport vesicles. FEBS Lett.314, 45– 48 (1992). ArticleCAS Google Scholar
Dietzen, D. J., Hastings, W. R. & Lublin, D. M. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem.270, 6838–6842 (1995). ArticleCAS Google Scholar
Dupree, P., Parton, R. G., Raposo, G., Kurzchalia, T. V. & Simons, K. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J.12, 1597–1605 (1993). ArticleCAS Google Scholar
Song, S. K. et al. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem.271, 9690–9697 (1996). ArticleCAS Google Scholar
Kurzchalia, T. V. et al. VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J. Cell Biol.118, 1003–1014 (1992). ArticleCAS Google Scholar
Anderson, R. G. W. The caveolae membrane system. Annu. Rev. Biochem.67 , 199–225 (1998). ArticleCAS Google Scholar
Chang, W.-J., Rothberg, K. G., Kamen, B. A. & Anderson, R. G. W. Lowering the cholesterol content of MA104 cells inhibits receptor mediated transport of folate. J. Cell Biol.118, 63–69 (1992). ArticleCAS Google Scholar
Murata, M. et al. Identification of caveolin-1 as a fatty acid binding protein . Proc. Natl Acad. Sci. USA92, 10339– 10343 (1995). ArticleCAS Google Scholar
Trigatti, B., Anderson, R. G. W. & Gerber, G. A role for caveolin in transport of cholesterol from ER to plasma membrane. Biochem. Biophys. Res. Commun.255, 34–39 (1999). ArticleCAS Google Scholar
Smart, E. J., Ying, Y.-S., Donzell, W. C. & Anderson, R. G. W. A role for caveolin in transport of cholesterol from ER to plasma membrane . J. Biol. Chem.271, 29427– 29435 (1996). ArticleCAS Google Scholar
Smart, E. J., Ying, Y.-U., Conrad, P. A. & Anderson, R. G. W. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol.127, 1185– 1197 (1994). ArticleCAS Google Scholar
Conrad, P. A., Smart, E. J., Ying, Y.-S., Anderson, R. G. W. & Bloom, G. S. Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. J. Cell Biol.131, 1424– 1433 (1995). Article Google Scholar
Ridgway, N. D., Dawson, P. A., Ho, Y. K., Brown, M. S. & Goldstein, J. L. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J. Cell Biol.116, 307–319 (1992). ArticleCAS Google Scholar
Christophe, J. Pancreatic tumoral cell line AR42J: an amphicrine model. Am. J. Physiol.266, G963–G971 (1994). CASPubMed Google Scholar
Engelman, J. A. et al. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem.272, 16374–16381 (1997). ArticleCAS Google Scholar
Blobel, G. & Dobberstein, B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma . J. Cell Biol.67, 835– 851 (1975). ArticleCAS Google Scholar
Matlack, K. E., Mothes, W. & Rapoport, T. A. Protein translocation: tunnel vision. Cell92, 381–390 ( 1998). ArticleCAS Google Scholar
Uittenbogaard, A., Ying, Y. & Smart, E. J. Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J. Biol. Chem.273, 6525–6532 ( 1998). ArticleCAS Google Scholar
Trigatti, B. L., Mangroo, D. & Gerber, G. E. Photoaffinity labeling and fatty acid permeation in 3T3-L1 adipocytes. J. Biol. Chem.266, 22621–22625 (1991). CASPubMed Google Scholar
Fielding, C. J., Bist, A. & Fielding, P. E. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc. Natl Acad. Sci. USA94, 3753–3758 (1997). ArticleCAS Google Scholar
Hailstones, D., Sleer, L. S., Parton, R. G. & Stanley, K. K. Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid. Res.39, 369–379 (1998). CASPubMed Google Scholar
Okamoto, T., Schlegel, A., Scherer, P. E. & Lisanti, M. P. Caveolins, a family of scaffolding proteins for organizing ‘‘preassembled signaling complexes’’ at the plasma membrane. J. Biol. Chem.273, 5419–5422 ( 1998). ArticleCAS Google Scholar
Ko, Y. G., Liu, P., Pathak, R. K., Craig, L. C. & Anderson, R. G. Early effects of pp60(v-src) kinase activation on caveolae. J. Cell. Biochem.71, 524– 535 (1998). ArticleCAS Google Scholar
Kongshaug, M., Moan, J. & Brown, S. B. The distribution of porphyrins with different tumour localising ability among human plasma proteins. Br. J. Cancer59, 184–188 (1989). ArticleCAS Google Scholar
Roth, J. Postembedding labeling on Lowicryl K4M tissue sections: detection and modification of cellular components. Methods Cell Biol.31, 513–551 (1989). ArticleCAS Google Scholar
Tokuyasu, K. T. Immunochemistry on ultrathin frozen sections. Histochem. J.12, 381–403 (1980). ArticleCAS Google Scholar