Purification of recombinant proteins by fusion with thermally-responsive polypeptides (original) (raw)
References
Nilsson, B., Forsberg, G., Moks, T., Hartmanis, M. & Uhlén, M. Fusion proteins in biotechnology and structural biology. Curr. Opin. Struct. Biol.2, 569–575 (1992). ArticleCAS Google Scholar
Uhlén, M. & Moks, T. Gene fusions for purpose of expression: an introduction. Methods Enzymol.195, 129–143 (1990). Article Google Scholar
Maina, C.V. et al. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose binding protein. Gene74, 365–373 (1988). ArticleCAS Google Scholar
Smith, D.B. & Johnson, K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene67, 31–40 (1988). ArticleCAS Google Scholar
Tsao, K.W., deBarbieri, B., Hanspeter, M. & Waugh, D.W. A versatile plasmid expression vector for the production of biotinylated proteins by site-specific, enzymatic modification in Escherichia coli. Gene169, 59–64 (1996). ArticleCAS Google Scholar
Smith, P.A. et al. A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in Escherichia coli. Nucleic Acids Res.26, 1414–1420 (1998). ArticleCAS Google Scholar
LaVallie, E.R. et al. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology11, 187–193 (1993). CASPubMed Google Scholar
Ong, E. et al. The cellulose-binding domains of cellulases: tools for biotechnology. Trends Biotechnol.7, 239–243 (1989). ArticleCAS Google Scholar
Smith, M.C., Furman, T.C., Ingolia, T.D. & Pidgeon, C. Chelating peptide-immobilized metal ion affinity chromatography. J. Biol. Chem.263, 7211–7215 (1988). CASPubMed Google Scholar
Kim, J-S. & Raines, R.T. Ribonuclease S-peptide as a carrier in fusion proteins. Protein. Sci.2, 348–356 (1993). ArticleCAS Google Scholar
Su, X., Prestwood, A.K. & McGraw, R.A. Production of recombinant porcine tumor necrosis factor alpha in a novel E. coli expression system. Biotechniques13, 756–762 (1992). CASPubMed Google Scholar
Nilsson, J., Ståhl, S., Lundeberg, J., Uhlén, M. & Nygren, P.Å. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif.11, 1–16 (1997). ArticleCAS Google Scholar
Urry, D.W. Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition due to internal chain dynamics. J. Protein. Chem.7, 1–34 (1988). ArticleCAS Google Scholar
Urry, D.W. Free energy transduction in polypeptides and proteins based on inverse temperature transitions. Prog. Biophys. Mol. Biol.57, 23–57 (1992). ArticleCAS Google Scholar
Urry, D.W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B101, 11007–11028 (1997). ArticleCAS Google Scholar
McPherson, D.T., Xu, J. & Urry, D.W. Product purification by reversible phase transition following Escherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP. Protein Expr. Purif.7, 51–57 (1996). ArticleCAS Google Scholar
Hoffman. A.S. Applications of thermally-reversible polymers and hydrogels in therapeutics and diagnostics. J. Controlled Release6, 297–305 (1987). ArticleCAS Google Scholar
Chen, J.P. & Hoffman A.S. Protein-polymer conjugates II. Affinity precipitation separation of immunogammaglobulin by a poly(_N_-isopropylacrylamide)-protein A conjugate. Biomaterials11, 631–634 (1990). ArticleCAS Google Scholar
Chilkoti, A., Chen, G-H., Stayton, P.S. & Hoffman, A.S. Site-specific conjugation of a temperature-sensitive polymer to a genetically-engineered protein. Bioconjugate Chem.5, 504–507 (1994). ArticleCAS Google Scholar
Urry, D.W. et al. Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J. Am. Chem. Soc.113, 4346–4348 (1991). ArticleCAS Google Scholar
Urry, D.W., Trapane, T.L. & Prasad, K.U. Phase-structure transitions of the elastin polypentapeptide-water system within the framework of composition-temperature studies. Biopolymers24, 2345–2356 (1985). ArticleCAS Google Scholar
Vertesy, L., Oeding, V., Bender, R., Zepf, K. & Nesemann, G. Tendamistat (HOE 467), a tight-binding alpha-amylase inhibitor from Streptomyces tendae 4158. Eur. J. Biochem.141, 505–512 (1984). ArticleCAS Google Scholar
Porath, J. Immobilized metal ion affinity chromatography. Prot. Expr. Purif.3, 262–282 (1992). Article Google Scholar
Coligan, J.E., Dunn, B.M., Ploegh, H.L., Speicher, D.W. & Wingfield, P.T. Current protocols in protein science. (John Wiley & Sons, New York; 1995). Google Scholar
Hartmeier, W. Immobilized biocatalysts. (Springer-Verlag, Berlin; 1988). Book Google Scholar
Diamandis, E.P. & Christopoulos, T.K. Immunoassay. (Academic Press, San Diego, CA; 1996). Google Scholar
Dewhirst, M.W. & Samulski, T.V. Current Concepts: Hyperthermia in the treatment of cancer. (The UpJohn Co., Kalamazoo, MI; 1998). Google Scholar
Hauck, M.L., Dewhirst, M.W., Bigner, D.D. & Zalutsky, M.R. Local hyperthermia improves uptake of a chimeric monoclonal antibody in a subcutaneous xenograft model. Clin. Cancer Res.3, 63–70 (1997). CASPubMed Google Scholar
Cope, D.A., Dewhirst, M.W., Friedman, H.S., Bigner, D.D. & Zalutsky, M.R. Enhanced delivery of a monoclonal antibody F(ab′)2 fragment to subcutaneous human glioma xenografts using local hyperthermia. Cancer Res.50, 1803–1809 (1990). CASPubMed Google Scholar
Ausubel, F.M. et al. Current protocols in molecular biology (John Wiley & Sons, New York; 1995). Google Scholar
Holmgren, A. & Bjornstedt, M. Enzymatic reduction-oxidation of protein disulfides by thioredoxin. Methods Enzymol.107, 295–300 (1984). ArticleCAS Google Scholar