Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome (original) (raw)

References

  1. SanMiguel, P. et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765– 768 (1996).
    Article CAS Google Scholar
  2. Martienssen, R. Transposons, DNA methylation and gene control. Trends Genet. 14, 263–264 (1998).
    Article CAS Google Scholar
  3. Bennetzen, J.L., Schrick, K., Springer, P.S., Brown, W.E. & SanMiguel, P. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37, 565–576 ( 1994).
    Article CAS Google Scholar
  4. Moore, G. et al. Key features of cereal genome organization as revealed by the use of cytosine methylation-sensitive restriction endonucleases. Genomics 15, 472–482 ( 1993).
    Article CAS Google Scholar
  5. White, S.E., Habera, L.F. & Wessler, S.R. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl Acad. Sci. USA 91, 11792–11796 (1994).
    Article CAS Google Scholar
  6. Colot, V. & Rossignol, J.L. Eukaryotic DNA methylation as an evolutionary device. Bioessays 21, 402 –411 (1999).
    Article CAS Google Scholar
  7. Hake, S. & Walbot, V. The genome of Zea mays, its organization and homology to related grasses. Chromosoma 79, 251–270 (1980).
    Article CAS Google Scholar
  8. Bennetzen, J.L. The regulation of Mutator function and Mu1 transposition. UCLA Symp. Mol. Cell. Biol. 35, 343– 354 (1985).
    CAS Google Scholar
  9. Gruenbaum, Y., Naveh-Many, T., Cedar, H. & Razin, A. Sequence specificity of methylation in higher plant DNA. Nature 292, 860–862 ( 1981).
    Article CAS Google Scholar
  10. Burr, B.A., Burr, F.A., Thompson, K.H., Albertson, M.C. & Stuber, C.W. Gene mapping with recombinant inbreds in maize. Genetics 118, 519– 526 (1988).
    CAS PubMed PubMed Central Google Scholar
  11. Blumenthal, R.M., Gregory, S.A. & Cooperider, J.S. Cloning of a restriction-modification system from Proteus vulgaris and its use in analyzing a methylase-sensitive phenotype in Escherichia coli. J. Bacteriol. 164, 501–509 (1985).
    CAS PubMed PubMed Central Google Scholar
  12. Raleigh, E.A. & Wilson, G. Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Natl Acad. Sci. USA 83, 9070–9074 (1986).
    Article CAS Google Scholar
  13. Arumuganathan, K. & Earle, E.D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9, 208–218 (1991).
    Article CAS Google Scholar
  14. Gaut, B.S. & Doebley, J.F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl Acad. Sci. USA 94, 6809–6814 ( 1997).
    Article CAS Google Scholar
  15. Raleigh, E.A. et al. McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res. 16, 1563–1575 ( 1988).
    Article CAS Google Scholar
  16. Yanisch-Perron, C., Vieira, J. & Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119 (1985).
    Article CAS Google Scholar
  17. Sutherland, E., Coe, L. & Raleigh, E.A. McrBC: a multisubunit GTP-dependent restriction endonuclease. J. Mol. Biol. 225, 327– 348 (1992).
    Article CAS Google Scholar
  18. Martienssen, R.A. & Richards, E.J. DNA methylation in eukaryotes Curr. Opin. Genet. Dev. 5, 234–242 (1995).
    Article CAS Google Scholar
  19. SanMiguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. & Bennetzen, J.L. The paleontology of intergene retrotransposons of maize. Nature Genet. 20, 43– 45 (1998).
    Article CAS Google Scholar
  20. Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377 (suppl.), 3–17 ( 1995).
    CAS Google Scholar
  21. Yoder, J.A., Walsh, C.P. & Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335– 340 (1997).
    Article CAS Google Scholar
  22. Kass, S.U., Pruss, D. & Wolffe, A.P. How does DNA methylation repress transcription? Trends Genet. 13, 444–449 (1997).
    Article CAS Google Scholar
  23. Grant, S.G., Jessee, J., Bloom, F.R. & Hanahan, D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Natl Acad. Sci. USA 87, 4645 –4649 (1990).
    Article CAS Google Scholar
  24. Doherty, J.P. et al. Effects of mcr restriction of methylated CpG islands of the L1 transposons during packaging and plating stages of mammalian genomic library construction. Gene 98, 77– 82 (1991).
    Article CAS Google Scholar
  25. Woodcock, D.M. et al. RglB facilitated cloning of highly methylated eukaryotic DNA: the human L1 transposon, plant DNA, and DNA methylated in vitro with human DNA methyltransferase. Nucleic Acids Res. 25, 4465–4482 (1988).
    Article Google Scholar
  26. Wessler, S.R., Bureau, T.E. & White, S.E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5, 814–821 (1995).
    Article CAS Google Scholar
  27. Bird, A. Does DNA methylation control transposition of selfish elements in the germline? Trends Genet. 13, 469– 472 (1997).
    Article CAS Google Scholar
  28. Williamson, M.R., Doherty, J.P. & Woodcock, D.M. Modified-cytosine restriction-system-induced recombinant cloning artefacts in Escherichia coli. Gene 124, 37–44 (1993).
    CAS PubMed Google Scholar
  29. White, S. & Doebley, J. Of genes and genomes and the origin of maize. Trends Genet. 14, 327– 332 (1998).
    Article CAS Google Scholar
  30. Bureau, T.E., Ronald, P.C. & Wessler, S.R. A computer based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl Acad. Sci. USA 93, 8524 ( 1996).
    Article CAS Google Scholar

Download references