The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases (original) (raw)

References

  1. Morgan, D. O. Cyclin-dependent kinases: engines, clocks and microprocessors. Annu. Rev. Cell. Dev. Biol. 13, 261– 291 (1997).
    Article CAS Google Scholar
  2. De Bondt, H. L. et al. Crystal structure of cyclin dependent kinase 2. Nature 363, 592–602 ( 1993).
    Article Google Scholar
  3. Brown, N. R. et al. The crystal structure of cyclin A. Structure 3, 1235–1247 (1995).
    Article CAS Google Scholar
  4. Jeffrey, P. D. et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313– 320 (1995).
    Article CAS Google Scholar
  5. Russo, A., Jeffrey, P. D. & Pavletich, N. P. Structural basis of cyclin dependent kinase activation by phosphorylation. Nature Struct. Biol. 3, 696–700 (1996).
    Article CAS Google Scholar
  6. Brown, N. R. et al. Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J. Biol. Chem. 274 , 8746–8756 (1999).
    Article CAS Google Scholar
  7. Songyang, Z. et al. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4, 973–982 (1994).
    Article CAS Google Scholar
  8. Higashi, H. et al. Differences in substrate specificity between CDK2-cyclin A and CDK2-cyclin E in vitro. Biochem. Biophys. Res. Commun. 216, 520–525 ( 1995).
    Article CAS Google Scholar
  9. Holmes, J. K. & Solomon, M. J. A predictive scale for evaluating cyclin depedent kinase substrates. J. Biol. Chem. 271 , 25240–25246 (1996).
    Article CAS Google Scholar
  10. Kitagawa, M. et al. The consensus motif for phosphorylation by cyclin D1-CDK4 is different from that for phosphorylation by cyclin A/E-CDK2. EMBO J. 15, 7060–7069 ( 1996).
    Article CAS Google Scholar
  11. Zarkowski, T., U, S., Harlow, E. & Mittnacht, S. Monoclonal antibodies for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene 14, 249–254 (1997).
    Article Google Scholar
  12. Zhu, L., Harlow, E. & Dynlacht, B. D. p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev. 9, 1740–1752 ( 1995).
    Article CAS Google Scholar
  13. Adams, P. D. et al. Identification of a cyclin-CDK2 recognition motif present in substrates and p21-like cyclin dependent kinase inhibitors. Mol. Cell Biol. 16, 6623–6633 (1996).
    Article CAS Google Scholar
  14. Chen, J., Saha, P., Kornbluth, S., Dynlacht, B. D. & Dutta, A. Cyclin binding motifs are essential for the function of p21cip1. Mol. Cell Biol. 16, 4673–4682 (1996).
    Article CAS Google Scholar
  15. Dynlacht, B. D., Moberg, K., Lees, J. A., Harlow, E. & Zhu, L. Specific regulation of E2F family members by cyclin-dependent kinases. Mol. Cell Biol. 17, 3867–3875 (1997).
    Article CAS Google Scholar
  16. Schulman, B., Lindstrom, D. L. & Harlow, E. Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc. Natl Acad. Sci. USA 95, 10453–10458 ( 1998).
    Article CAS Google Scholar
  17. Adams, P. D. et al. Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-CDK complexes. Mol. Cell Biol. 19, 1068–1080 ( 1999).
    Article CAS Google Scholar
  18. Chen, Y.-N. P. et al. Selective killing of transformed cells by cyclin/cyclin dependent kinase 2 antagonists. Proc. Natl Acad. Sci. USA 96, 4325–4329 (1999).
    Article CAS Google Scholar
  19. Nigg, E. A. Targets of cyclin-dependent protein kinases. Curr. Opin. Cell Biol. 5, 187–193 ( 1993).
    Article CAS Google Scholar
  20. Sarcevic, B., Lilischkis, R. & Sutherland, R. L. Differential phosphorylation of T-47D human breast cancer cell substrates by D1, D3, E, and A-type cyclin-CDK complexes. J. Biol. Chem. 272, 33327–33337 (1997).
    Article CAS Google Scholar
  21. Kelly, B. L., Wolfe, K. G. & Roberts, J. M. Identification of a substrate-targeting domain in cyclin E necessary for phosphorylation of the retinoblastoma protein. Proc. Natl Acad. Sci. USA 95, 2535– 2540 (1998).
    Article CAS Google Scholar
  22. Petersen, B. O., Lukas, J., Sorensen, C. S., Bartek, J. & Helin, K. Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localisation. EMBO J. 18, 396–410 ( 1999).
    Article CAS Google Scholar
  23. Lowe, E. D. et al. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J. 16, 6646–6658 (1997).
    Article CAS Google Scholar
  24. Skamnaki, V. T. et al. The catalytic mechanism of phosphorylase kinase probed by mutational studies. Biochemistry (in the press).
  25. Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J. & Pavletich, N. P. Crystal structure of the p27KIP1 cyclin-dependent-kinase inhibitor bound to the cyclin A-CDK2 complex. Nature 382, 325– 331 (1996).
    Article CAS Google Scholar
  26. Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H. & Goldsmith, E. J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869 ( 1997).
    Article CAS Google Scholar
  27. Solomon, M. J. & Kaldis, P. in Results and Problems in Cell Differentiation (ed. Pagano, M.) 79– 109 (Springer, New York, 1998).
    Google Scholar
  28. Sharma, P. et al. Identification of substrate binding site of cyclin dependent kinase 5. J. Biol. Chem. 274, 9600– 9606 (1999).
    Article CAS Google Scholar
  29. Kobayashi, H. et al. Identification of the domains in cyclin A required for binding to, and activation of, p34cdc2 and p32cdk2 protein kinase subunits. Mol. Biol. Cell. 3, 1279–1294 (1992).
    Article CAS Google Scholar
  30. Schreuder, H. A., Groendijk, H., van der Laan, J. M. & Wierenga, R. K. The transfer of protein crystals from their original mother liquor to a solution with a completely different precipitant. J. Appl. Cryst. 21, 426–429 (1988).
    Article CAS Google Scholar
  31. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1990).
    Article Google Scholar
  32. Murshudov, G. N., Vagen, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240– 255 (1997).
    Article CAS Google Scholar
  33. Read, R. J. Improved coefficients for map calculation using partial structures with errors . Acta Crystallogr. A 42, 140– 149 (1986).
    Article Google Scholar
  34. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved method for building models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110 –119 (1991).
    Article Google Scholar
  35. Lamzin, V. S. & Wilson, K. S. Automated refinement of protein models. Acta Crystallogr. D 49, 129– 147 (1993).
    Article CAS Google Scholar

Download references