Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system (original) (raw)

References

  1. de Vries, H. L. Brownian movement and hearing. Physica 14, 48–60 (1948).
    Article Google Scholar
  2. Corey, D. P. & Hudspeth, A. J. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3, 962–976 (1983).
    Article CAS Google Scholar
  3. Harris, G. G. Brownian motion in the cochlear partition. J. Acoust. Soc. Am. 44, 176–186 ( 1968).
    Article CAS Google Scholar
  4. Wiesenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995).
    Article CAS Google Scholar
  5. McNamara, B. & Wiesenfeld, K. Theory of stochastic resonance. Phys. Rev. A 39, 4854– 4869 (1989).
    Article CAS Google Scholar
  6. Bezrukov, S. M. & Vodyanov, I. Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378, 362–364 (1995).
    Article CAS Google Scholar
  7. Collins, J. J., Imhoff, T. T. & Grigg, P. Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J. Neurophysiol. 76, 642–645 ( 1996).
    Article CAS Google Scholar
  8. Levin, J. E. & Miller, J. P. Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature 380, 165–168 ( 1996).
    Article CAS Google Scholar
  9. Douglass, J. K., Wilkens, L., Pantazelou, E. & Moss, F. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337– 340 (1993).
    Article CAS Google Scholar
  10. Narins, P. M., Benedix, J. H. Jr., & Moss, F. Can increasing temperature improve information transfer in the anuran peripheral auditory system? Aud. Neurosci. 3, 389–400 (1997).
    Google Scholar
  11. Svrcek-Seiler, W. A., Gebeshuber, I. C., Rattay, F., Biro, T. S. & Markum, H. Micromechanical models for the Brownian motion of hair cell stereocilia. J. Theor. Biol. (in press).
  12. Lindeman, H. H., Ades, H. W., Bredberg, G. & Engström, H. The sensory hairs and the tectorial membrane in the development of the cat's organ of Corti. Acta Otolaryngol. 72, 229 –242 (1972).
    Article Google Scholar
  13. Dallos, P. Response characteristics of mammalian cochlear hair cells. J. Neurosci. 5, 1591–1608 ( 1985).
    Article CAS Google Scholar
  14. Dallos, P., Billone, M. C., Durrant, J. D., Wang, C. & Raynor, S. Cochlear inner and outer hair cells: functional differences. Science 177, 356 –358 (1985).
    Article Google Scholar
  15. Ruggero, M. Responses to sound of the basilar membrane of the mammalian cochlea. Curr. Opin. Neurobiol. 2, 449–456 (1992).
    Article CAS Google Scholar
  16. Denk, W. & Webb, W. W. Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells. Hear. Res. 60, 89–102 (1992).
    Article CAS Google Scholar
  17. Denk, W., Webb, W. W. & Hudspeth, A. J. Mechanical properties of sensory hair bundles are reflected in their Brownian motion measured with a laser differential interferometer. Proc. Natl Acad. Sci. USA 86, 5371– 5375 (1989).
    Article CAS Google Scholar
  18. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 ( 1981).
    Article CAS Google Scholar
  19. Howard, J. & Hudspeth, A. J. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc. Natl Acad. Sci. USA 84, 3064–3068 (1987).
    Article CAS Google Scholar
  20. Howard, J. & Ashmore, J. F. Stiffness of sensory hair bundles in the sacculus of the frog. Hear. Res. 23, 93–104 (1986).
    Article CAS Google Scholar
  21. Atkins, P. W. in Physical Chemistry, (Oxford University Press, Oxford, 1978).
    Google Scholar
  22. Howard, J., Roberts, W. M. & Hudspeth, A. J. Mechanoelectrical transduction by hair cells. Ann. Rev. Biophys. and Biophys. Chem. 17, 99– 124 (1988).
    Article CAS Google Scholar
  23. Russell, I. J., Richardson, G. P. & Cody, A. R. Mechanosensitivity of mammalian auditory hair cells in vitro. Nature 321, 517– 519 (1986).
    Article CAS Google Scholar
  24. Russell, I. J., Kossl, M. & Richardson, G. P. Nonlinear mechanical responses of mouse cochlear hair bundles. Proc. R. Soc. Lond. B 250, 217–227 (1992).
    Google Scholar
  25. Howard, J. & Hudspeth, A. J. Gating compliance associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron 1, 189– 199 (1988).
    Article CAS Google Scholar
  26. Pickles, J. O., Comis, S. D. & Osborne, M. P. Cross-links between sterocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear. Res. 15, 103–112 ( 1984).
    Article CAS Google Scholar
  27. Assad, J. A., Hacohen, N. & Corey, D. P. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc. Natl Acad. Sci. USA 86, 2918–2922 ( 1989).
    Article CAS Google Scholar

Download references