Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system (original) (raw)
References
de Vries, H. L. Brownian movement and hearing. Physica14, 48–60 (1948). Article Google Scholar
Corey, D. P. & Hudspeth, A. J. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci.3, 962–976 (1983). ArticleCAS Google Scholar
Harris, G. G. Brownian motion in the cochlear partition. J. Acoust. Soc. Am.44, 176–186 ( 1968). ArticleCAS Google Scholar
Wiesenfeld, K. & Moss, F. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature373, 33–36 (1995). ArticleCAS Google Scholar
McNamara, B. & Wiesenfeld, K. Theory of stochastic resonance. Phys. Rev. A39, 4854– 4869 (1989). ArticleCAS Google Scholar
Bezrukov, S. M. & Vodyanov, I. Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature378, 362–364 (1995). ArticleCAS Google Scholar
Collins, J. J., Imhoff, T. T. & Grigg, P. Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J. Neurophysiol.76, 642–645 ( 1996). ArticleCAS Google Scholar
Levin, J. E. & Miller, J. P. Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance. Nature380, 165–168 ( 1996). ArticleCAS Google Scholar
Douglass, J. K., Wilkens, L., Pantazelou, E. & Moss, F. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature365, 337– 340 (1993). ArticleCAS Google Scholar
Narins, P. M., Benedix, J. H. Jr., & Moss, F. Can increasing temperature improve information transfer in the anuran peripheral auditory system? Aud. Neurosci.3, 389–400 (1997). Google Scholar
Svrcek-Seiler, W. A., Gebeshuber, I. C., Rattay, F., Biro, T. S. & Markum, H. Micromechanical models for the Brownian motion of hair cell stereocilia. J. Theor. Biol. (in press).
Lindeman, H. H., Ades, H. W., Bredberg, G. & Engström, H. The sensory hairs and the tectorial membrane in the development of the cat's organ of Corti. Acta Otolaryngol.72, 229 –242 (1972). Article Google Scholar
Dallos, P. Response characteristics of mammalian cochlear hair cells. J. Neurosci.5, 1591–1608 ( 1985). ArticleCAS Google Scholar
Dallos, P., Billone, M. C., Durrant, J. D., Wang, C. & Raynor, S. Cochlear inner and outer hair cells: functional differences. Science177, 356 –358 (1985). Article Google Scholar
Ruggero, M. Responses to sound of the basilar membrane of the mammalian cochlea. Curr. Opin. Neurobiol.2, 449–456 (1992). ArticleCAS Google Scholar
Denk, W. & Webb, W. W. Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells. Hear. Res.60, 89–102 (1992). ArticleCAS Google Scholar
Denk, W., Webb, W. W. & Hudspeth, A. J. Mechanical properties of sensory hair bundles are reflected in their Brownian motion measured with a laser differential interferometer. Proc. Natl Acad. Sci. USA86, 5371– 5375 (1989). ArticleCAS Google Scholar
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch.391, 85–100 ( 1981). ArticleCAS Google Scholar
Howard, J. & Hudspeth, A. J. Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc. Natl Acad. Sci. USA84, 3064–3068 (1987). ArticleCAS Google Scholar
Howard, J. & Ashmore, J. F. Stiffness of sensory hair bundles in the sacculus of the frog. Hear. Res.23, 93–104 (1986). ArticleCAS Google Scholar
Atkins, P. W. in Physical Chemistry, (Oxford University Press, Oxford, 1978). Google Scholar
Howard, J., Roberts, W. M. & Hudspeth, A. J. Mechanoelectrical transduction by hair cells. Ann. Rev. Biophys. and Biophys. Chem.17, 99– 124 (1988). ArticleCAS Google Scholar
Russell, I. J., Richardson, G. P. & Cody, A. R. Mechanosensitivity of mammalian auditory hair cells in vitro. Nature321, 517– 519 (1986). ArticleCAS Google Scholar
Russell, I. J., Kossl, M. & Richardson, G. P. Nonlinear mechanical responses of mouse cochlear hair bundles. Proc. R. Soc. Lond.B 250, 217–227 (1992). Google Scholar
Howard, J. & Hudspeth, A. J. Gating compliance associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron1, 189– 199 (1988). ArticleCAS Google Scholar
Pickles, J. O., Comis, S. D. & Osborne, M. P. Cross-links between sterocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear. Res.15, 103–112 ( 1984). ArticleCAS Google Scholar
Assad, J. A., Hacohen, N. & Corey, D. P. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc. Natl Acad. Sci. USA86, 2918–2922 ( 1989). ArticleCAS Google Scholar