Structure and ligand of a histone acetyltransferase bromodomain (original) (raw)

References

  1. Brownell, J. E. & Allis, C. D. Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 6, 176–184 (1996).
    Article CAS Google Scholar
  2. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).
    Article ADS CAS Google Scholar
  3. Wolffe, A. P. Sinful repression. Nature 387, 16–17 (1997).
    Article ADS CAS Google Scholar
  4. Shikama, N., Lyon, J. & Thangue, N. B. L. The p300/CBP family: Integrating signals with transcription factors and chromatin. Trends Cell Biol. 7, 230–236 (1997).
    Article CAS Google Scholar
  5. Haynes, S. R. et al. The bromodomain: A conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 20, 2603–2603 (1992).
    Article ADS CAS Google Scholar
  6. Jeanmougin, F., Wurtz, J. M., Douarin, B. L., Chambon, P. & Losson, R. The bromodomain revisited. Trends Biochem. Sci. 22, 151–153 (1997).
    Article CAS Google Scholar
  7. Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 (1996).
    Article CAS Google Scholar
  8. Ogryzko, V. V., Schiltz, O. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).
    Article CAS Google Scholar
  9. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).
    Article ADS CAS Google Scholar
  10. Yang, X.-J., Ogryzko, V. V., Nishikawa, J.-I., Howard, B. H. & Nakatani, Y. Ap300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).
    Article ADS CAS Google Scholar
  11. Puri, P. L. et al. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Cell 1, 35–45 (1997).
    CAS Google Scholar
  12. Richardson, J. S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339 (1981).
    Article CAS Google Scholar
  13. Presnell, S. R. & Cohen, F. E. Topological distribution of four-α-helix bundles. Proc. Natl Acad. Sci. USA 86, 6592–6596 (1989).
    Article ADS CAS Google Scholar
  14. Weber, P. C. & Salemme, F. R. Structural and functional diversity in 4-α-helical proteins. Nature 287, 82–84 (1980).
    Article ADS CAS Google Scholar
  15. Kurokawa, R. et al. Differential use of CREB binding protein–coactivator complex. Nature 279, 700–703 (1998).
    CAS Google Scholar
  16. Chen, H. et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 (1997).
    Article CAS Google Scholar
  17. Kuo, M.-H. et al. Transcription-linked acetylation by Gcn5p of histone H3 and H4 at specific lysines. Nature 383, 269–272 (1996).
    Article ADS CAS Google Scholar
  18. Dutnall, R. N., Tafrov, S. T., Sternglanz, R. & Ramakrishnan, V. Structure of the histone acetyltransferase Hat1: A paradigam for the GCN5-related N-acetyltransferase superfamily. Cell 94, 427–438 (1998).
    Article CAS Google Scholar
  19. Pawson, T. Protein modules and signalling networks. Nature 373, 573–580 (1995).
    Article ADS CAS Google Scholar
  20. Geogakopoulos, T., Gounalaki, N. & Thireos, G. Genetic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2. Mol. Gen. Genet. 246, 723–728 (1995).
    Article Google Scholar
  21. Yamazaki, T., Lee, W., Arrowsmith, C. H., Mahandiram, D. R. & Kay, L. E. Asuite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655–11666 (1994).
    Article CAS Google Scholar
  22. Clore, G. M. & Gronenborn, A. M. Multidimensional heteronuclear nuclear magnetic resonance of proteins. Meth. Enzymol. 239, 249–363 (1994).
    Google Scholar
  23. Logan, T. M., Olejniczak, E. T., Xu, R. X. & Fesik, S. W. Ageneral method for assigning NMR spectra of denaturated proteins using 3D HC(CO)NH-TOCSY triple resonance experiments. J. Biomol. NMR 3, 225–231 (1993).
    Article CAS Google Scholar
  24. Neri, D., Szyperski, T., Otting, G., Senn, H. & Wüthrich, K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516 (1989).
    Article CAS Google Scholar
  25. Johnson, B. A. & Blevins, R. A. NMRView: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).
    Article CAS Google Scholar
  26. Brünger, A. T. X-PLOR Version 3.1: A System for X-Ray Crystallography and NMR(Yale University Press, New Haven, (1993).
    Google Scholar
  27. Nilges, M. & O'Donoghue, S. Ambiguous NOEs and automated NOE assignment. Progr. NMR Spectr. 32, 107–139 (1998).
    Article CAS Google Scholar
  28. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).
    Article CAS Google Scholar
  29. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).
    Article Google Scholar
  30. Nicholls, A., Bharadwj, R. & Honig, B. GRASP: Graphical representation and analysis of surface properties. Biophys. J. 64, 166–170 (1993).
    Google Scholar

Download references