Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells (original) (raw)
References
MacPherson, G. G., Warrell, M. J., White, N. J., Looareesuwan, S. & Warrell, D. A. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am. J. Pathol.119, 385–401 (1985). CASPubMedPubMed Central Google Scholar
Hill, A. V. et al . Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature360, 434–439 (1992). ArticleADSCAS Google Scholar
Marsh, K. et al . Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans. R. Soc. Trop. Med. Hyg.83, 293–303 (1989). ArticleCAS Google Scholar
Brown, K. N. Antigenic diversity, antigenic variation and merozoite surface protein 1. Parassitologia35, Suppl., 13–15 (1993). PubMed Google Scholar
Roberts, D. J. et al . Rapid switching to multiple and adhesive phenotypes in malaria. Nature357, 689–692 (1992). ArticleADSCAS Google Scholar
Gilbert, S. C. et al . Association of malaria parasite population structure, HLA, and immunological antagonism. Science279, 1173–1177 (1998). ArticleADSCAS Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleADSCAS Google Scholar
Sallusto, S., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med.182, 389–400 (1995). ArticleCAS Google Scholar
Smith, J. D. et al . Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell82, 101–110 (1995). ArticleCAS Google Scholar
Roberts, D. D. et al . Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. Nature318, 64–66 (1985). ArticleADSCAS Google Scholar
Barnwell, J. W. et al . Ahuman 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on _Plasmodium falciparum_-infected erythrocytes. J. Clin. Invest.84, 765–772 (1989). ArticleCAS Google Scholar
Berendt, A. R. et al . The binding site on ICAM-1 for _Plasmodium falciparum_-infected erythrocytes overlaps, but is distinct from, the LFA-1-binding site. Cell68, 71–81 (1992). ArticleCAS Google Scholar
Coppel, R. L., Cooke, B. M., Magowan, C. & Narla, M. Malaria and the erythrocyte. Curr. Opin. Hematol.5, 132–138 (1998). ArticleCAS Google Scholar
Zhou, L. J. & Tedder, T. F. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J. Immunol.154, 3821–3835 (1995). CASPubMed Google Scholar
Gardner, J. P., Pinches, R. A., Roberts, D. J. & Newbold, C. I. Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proc. Natl Acad. Sci. USA93, 3503–3508 (1996). ArticleADSCAS Google Scholar
Udeinya, I. J., Schmidt, J. A., Aikawa, M., Miller, L. H. & Green, I. Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science213, 555–557 (1981). ArticleADSCAS Google Scholar
Plebanski, M., Saunders, M., Burtles, S. S., Crowe, S. & Hooper, D. C. Primary and secondary human in vitro T cell responses to soluble antigens are mediated by subsets bearing different CD45 isoforms. Immunology75, 86–90 (1992). CASPubMedPubMed Central Google Scholar
Nagvekar, N. et al . Apathogenic role for the thymoma in myasthenia gravis. Autosensitization of IL-4-producing T-cell clones recognizing extracellular acetylcholine receptor epitopes presented by minority class II isotyes. J. Clin. Invest.101, 2268–2277 (1998). ArticleCAS Google Scholar
Williamson, B. A. & Greenwood, B. M. Impairment of the immune response to vaccination after acute malaria. Lancet1, 1328–1329 (1978). ArticleCAS Google Scholar
Greenwood, B. M., Bradley, A. K., Blakebrough, I. S. & Whittle, H. C. The immune response to a meningococcal polysaccharide vaccine in an African village. Trans. R. Soc. Trop. Med. Hyg.74, 340–346 (1980). ArticleCAS Google Scholar
Walsh, D. S., Looareessuwan, S., Vaninangonata, S., Virvan, C. & Webster, H. K. Cutaneous delayed-type hypersensitivity responsiveness in patients during and after Plasmodium falciparum and Plasmodium vivax infections. Clin. Immunol. Immunopathol.77, 89–94 (1995). ArticleCAS Google Scholar
Newbold, C. et al . Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am. J. Trop. Med. Hyg.57, 389–398 (1997). ArticleCAS Google Scholar
Howard, R. W. & Barnwell, J. W. Role of surface antigens on malaria-infected red blood cells in evasion of immunity. Contemp. Top. Immunobiol.12, 127–200 (1984). CASPubMed Google Scholar
Langreth, G. E. & Peterson, E. Pathogenicity, stability, and immunogenicity of a knobless clone of Plasmodium falciparum in Colombian owl monkeys. Infect. Immun.47, 760–766 (1985). CASPubMedPubMed Central Google Scholar
Gilks, C. F., Walliker, D. & Newbold, C. I. Relationships between sequestration, antigenic variation and chronic parasitism in _Plasmodium chabaudi chabaudi_—a rodent malaria model. Parasite Immunol.12, 45–64 (1990). ArticleCAS Google Scholar
Howard, R. J., Barnwell, J. W. & Kao, V. Antigenic variation of Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes. Proc. Natl Acad. Sci. USA80, 4129–4133 (1983). ArticleADSCAS Google Scholar
Udomsanpetch, R., Thanikkul, K., Pukrittayakamee, S. & White, N. J. Rosette formation by Plasmodium vivax. Trans. R. Soc. Trop. Med. Hyg.89, 635–637 (1995). ArticleCAS Google Scholar
Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science193, 673–675 (1976). ArticleADSCAS Google Scholar
Schwarzer, E., Turrini, F. & Arese, P. Aluminescence method for the quantitative determination of phagocytosis of erythrocytes, of malaria-parasitized erythrocytes and of malarial pigment. Br. J. Haematol.88, 740–745 (1994). ArticleCAS Google Scholar