Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation (original) (raw)

References

  1. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. Amodel for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).
    Article CAS Google Scholar
  2. Hoyt, M. A. & Geiser, J. R. Genetic analysis of the mitotic spindle. Annu. Rev. Genet. 30, 7–33 (1996).
    Article CAS Google Scholar
  3. Karsenti, E., Newport, J. & Kirschner, M. The respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J. Cell Biol. 99, 47s–54s (1984).
    Article CAS Google Scholar
  4. Karsenti, E., Newport, J., Hubble, R. & Kirschner, M. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs. J. Cell Biol. 98, 1730–1745 (1984).
    Article CAS Google Scholar
  5. Hyman, A. & Karsenti, E. The role of nucleation in patterning microtubule networks. J. Cell Sci. 111, 2077–2083 (1998).
    CAS PubMed Google Scholar
  6. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).
    Article ADS CAS Google Scholar
  7. Koepp, D. M. & Silver, P. A. AGTPase controlling nuclear trafficking: running the right way or walking randomly. Cell 87, 1–4 (1996).
    Article CAS Google Scholar
  8. Görlich, D. Transport into and out of the cell nucleus. EMBO J. 17, 2721–2727 (1998).
    Article Google Scholar
  9. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).
    Article CAS Google Scholar
  10. Nakamura, M. et al. When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to γ-tubulin. J. Cell Biol. 143, 1041–1052 (1998).
    Article CAS Google Scholar
  11. Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. & Ponstingl, H. RanGAP1 induces GTPase activity of nuclear ras-related Ran. Proc. Natl Acad. Sci. USA 91, 2587–2591 (1994).
    Article ADS CAS Google Scholar
  12. Klebe, C., Bischoff, F. R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34, 639–647 (1995).
    Article CAS Google Scholar
  13. Ullrich, O., Reinsch, S., Urbé, S., Zerial, M. & Parton, R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).
    Article CAS Google Scholar
  14. Palacios, I., Weis, K., Klebe, C., Mattaj, I. W. & Dingwall, C. Ran/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus. J. Cell Biol. 133, 485–494 (1996).
    Article CAS Google Scholar
  15. Görlich, D., Panté, N., Kutay, U., Aebi, U. & Bischoff, F. R. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594 (1996).
    Article Google Scholar
  16. Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I. W. & Görlich, D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J. 16, 6535–6547 (1997).
    Article CAS Google Scholar
  17. Dasso, M., Seki, T., Azuma, Y., Ohba, T. & Nishimoto, T. Amutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation. EMBO J. 13, 5732–5744 (1994).
    Article CAS Google Scholar
  18. Dasso, M., Nishitani, H., Kornbluth, S., Nishimoto, T. & Newport, J. W. RCC1, a regulator of mitosis, is essential for DNA replication. Mol. Cell. Biol. 12, 3337–3345 (1992).
    Article CAS Google Scholar
  19. Saitoh, H., Pu, R., Cavenagh, M. & Dasso, M. RanBP2 associated with Ubc9p and a modified form of RanGAP1. Proc. Natl Acad. Sci. USA 94, 3736–3741 (1997).
    Article ADS CAS Google Scholar
  20. Pu, R. T. & Dasso, M. The balance of RanBP1 and RCC1 is critical for nuclear assembly and nuclear transport. Mol. Biol. Cell 8, 1955–1970 (1997).
    Article CAS Google Scholar
  21. Heald, R., Tournebize, R., Habermann, A., Karsenti, E. & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138, 615–628 (1997).
    Article CAS Google Scholar
  22. Andersen, S. S. et al. Mitotic chromatin regulates phosphorylation of Stathmin/Op18. Nature 389, 640–643 (1997).
    Article ADS CAS Google Scholar
  23. Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W. & Görlich, D. Dominant-negative mutants of importin-β block multiple pathways of import and export through the nuclear pore complex. EMBO J. 16, 1153–1163 (1997).
    Article CAS Google Scholar
  24. Weis, K., Dingwall, C. & Lamond, A. I. Characterization of the nuclear protein import mechanism using Ran mutants with altered nucleotide binding specificities. EMBO J. 15, 7120–7128 (1996).
    Article CAS Google Scholar
  25. Murray, A. in Xenopus laevis: Practical Uses in Cell and Molecular Biology (eds Kay, B. K. & Peng, H. B.) 581–605 (Academic, San Diego, (1991).
    Book Google Scholar
  26. Lepault, J. & Dubochet, J. Electron microscopy of frozen hydrated specimens: preparation and characteristics. Meth. Enzymol. 127, 719–730 (1986).
    Article CAS Google Scholar
  27. Nicolás, F. et al. Xenopus Ran-binding protein I: molecular interactions and effects on nuclear assembly in Xenopus egg extracts. J. Cell Sci. 110, 3019–3030 (1997).
    PubMed Google Scholar
  28. Clarke, P. R., Klebe, C., Wittinghofer, A. & Karsenti, E. Regulation of Cdc2/cyclin B activation by Ran, a Ras-related GTPase. J. Cell Sci. 108, 1217–1225 (1994).
    Google Scholar
  29. Domínguez, J. E. et al. Aprotein related to brain microtubule-associated protein MAP1B is a component of the mammalian centrosome. J. Cell Sci. 107, 601–611 (1994).
    PubMed Google Scholar
  30. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).
    Article CAS Google Scholar

Download references