Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation (original) (raw)
References
Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. Amodel for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol.8, 903–913 (1998). ArticleCAS Google Scholar
Hoyt, M. A. & Geiser, J. R. Genetic analysis of the mitotic spindle. Annu. Rev. Genet.30, 7–33 (1996). ArticleCAS Google Scholar
Karsenti, E., Newport, J. & Kirschner, M. The respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J. Cell Biol.99, 47s–54s (1984). ArticleCAS Google Scholar
Karsenti, E., Newport, J., Hubble, R. & Kirschner, M. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs. J. Cell Biol.98, 1730–1745 (1984). ArticleCAS Google Scholar
Hyman, A. & Karsenti, E. The role of nucleation in patterning microtubule networks. J. Cell Sci.111, 2077–2083 (1998). CASPubMed Google Scholar
Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature382, 420–425 (1996). ArticleADSCAS Google Scholar
Koepp, D. M. & Silver, P. A. AGTPase controlling nuclear trafficking: running the right way or walking randomly. Cell87, 1–4 (1996). ArticleCAS Google Scholar
Görlich, D. Transport into and out of the cell nucleus. EMBO J.17, 2721–2727 (1998). Article Google Scholar
Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem.67, 265–306 (1998). ArticleCAS Google Scholar
Nakamura, M. et al. When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to γ-tubulin. J. Cell Biol.143, 1041–1052 (1998). ArticleCAS Google Scholar
Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. & Ponstingl, H. RanGAP1 induces GTPase activity of nuclear ras-related Ran. Proc. Natl Acad. Sci. USA91, 2587–2591 (1994). ArticleADSCAS Google Scholar
Klebe, C., Bischoff, F. R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry34, 639–647 (1995). ArticleCAS Google Scholar
Ullrich, O., Reinsch, S., Urbé, S., Zerial, M. & Parton, R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol.135, 913–924 (1996). ArticleCAS Google Scholar
Palacios, I., Weis, K., Klebe, C., Mattaj, I. W. & Dingwall, C. Ran/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus. J. Cell Biol.133, 485–494 (1996). ArticleCAS Google Scholar
Görlich, D., Panté, N., Kutay, U., Aebi, U. & Bischoff, F. R. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J.15, 5584–5594 (1996). Article Google Scholar
Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I. W. & Görlich, D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J.16, 6535–6547 (1997). ArticleCAS Google Scholar
Dasso, M., Seki, T., Azuma, Y., Ohba, T. & Nishimoto, T. Amutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation. EMBO J.13, 5732–5744 (1994). ArticleCAS Google Scholar
Dasso, M., Nishitani, H., Kornbluth, S., Nishimoto, T. & Newport, J. W. RCC1, a regulator of mitosis, is essential for DNA replication. Mol. Cell. Biol.12, 3337–3345 (1992). ArticleCAS Google Scholar
Saitoh, H., Pu, R., Cavenagh, M. & Dasso, M. RanBP2 associated with Ubc9p and a modified form of RanGAP1. Proc. Natl Acad. Sci. USA94, 3736–3741 (1997). ArticleADSCAS Google Scholar
Pu, R. T. & Dasso, M. The balance of RanBP1 and RCC1 is critical for nuclear assembly and nuclear transport. Mol. Biol. Cell8, 1955–1970 (1997). ArticleCAS Google Scholar
Heald, R., Tournebize, R., Habermann, A., Karsenti, E. & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol.138, 615–628 (1997). ArticleCAS Google Scholar
Andersen, S. S. et al. Mitotic chromatin regulates phosphorylation of Stathmin/Op18. Nature389, 640–643 (1997). ArticleADSCAS Google Scholar
Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W. & Görlich, D. Dominant-negative mutants of importin-β block multiple pathways of import and export through the nuclear pore complex. EMBO J.16, 1153–1163 (1997). ArticleCAS Google Scholar
Weis, K., Dingwall, C. & Lamond, A. I. Characterization of the nuclear protein import mechanism using Ran mutants with altered nucleotide binding specificities. EMBO J.15, 7120–7128 (1996). ArticleCAS Google Scholar
Murray, A. in Xenopus laevis: Practical Uses in Cell and Molecular Biology (eds Kay, B. K. & Peng, H. B.) 581–605 (Academic, San Diego, (1991). Book Google Scholar
Lepault, J. & Dubochet, J. Electron microscopy of frozen hydrated specimens: preparation and characteristics. Meth. Enzymol.127, 719–730 (1986). ArticleCAS Google Scholar
Nicolás, F. et al. Xenopus Ran-binding protein I: molecular interactions and effects on nuclear assembly in Xenopus egg extracts. J. Cell Sci.110, 3019–3030 (1997). PubMed Google Scholar
Clarke, P. R., Klebe, C., Wittinghofer, A. & Karsenti, E. Regulation of Cdc2/cyclin B activation by Ran, a Ras-related GTPase. J. Cell Sci.108, 1217–1225 (1994). Google Scholar
Domínguez, J. E. et al. Aprotein related to brain microtubule-associated protein MAP1B is a component of the mammalian centrosome. J. Cell Sci.107, 601–611 (1994). PubMed Google Scholar
Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol.143, 673–685 (1998). ArticleCAS Google Scholar