Adjacent phosphorylation sites on GABAA receptor β subunits determine regulation by cAMP-dependent protein kinase (original) (raw)

References

  1. Rabow, L.E., Russek, S.J. & Farb, D.H. From ion currents to genomic analysis: Recent advances in GABAA receptor research. Synapse 21, 189– 274 (1995)
    Article CAS Google Scholar
  2. Macdonald, R.L. & Olsen, R.W. GABAA receptor channels . Ann. Rev. Neurosci. 17, 569– 602 (1994)
    Article CAS Google Scholar
  3. Schofield, P.R. et al. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328, 221–227 (1987)
    Article CAS Google Scholar
  4. Pritchett, D.B. et al. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338, 582– 585 (1989)
    Article CAS Google Scholar
  5. Davies, P.A. Hanna, M.C. Hales, T.G. & Kirkness E.F. Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit . Nature 385, 820–823 (1997)
    Article CAS Google Scholar
  6. Nayeem, N. M., Green, T. P., Martin, I. L. & Barnard, E.A. Quaternary structure of the native GABAA receptor determined by electron microscopic image analysis. J. Neurochem. 62, 815– 818 (1994)
    Article CAS Google Scholar
  7. Moss S. J. & Smart T.G. Modulation of amino acid-gated ion channels by protein phosphorylation. Int. Rev. Neurosci. 39, 1–52 (1996)
    Article CAS Google Scholar
  8. Smart, T.G. Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation . Curr. Opin. Neurobiol. 7, 358– 367 (1997)
    Article CAS Google Scholar
  9. Kano, M. & Konnerth, A. Potentiation of GABA-mediated currents by cAMP-dependent protein kinase. Neuroreport 3, 563–566 (1992)
    Article CAS Google Scholar
  10. Feigenspan, A. & Bormann J. Facilitation of GABAergic signaling in the retina by receptors stimulating adenylate cyclase. Proc. Natl. Acad. Sci USA 91, 10893–10897 (1994)
    Article CAS Google Scholar
  11. Veruki, M.L. & Yeh H.H. Vasoactive intestinal polypeptide modulates GABAA receptor function through activation of cyclic AMP. Vis. Neurosci. 11, 899–908 (1994)
    Article CAS Google Scholar
  12. Kapur, J. & Macdonald, R.L. Cyclic AMP-dependent protein kinase enhances hippocampal dentate granule cell GABAA receptor currents. J . Neurophysiol. 76, 2626– 2634 (1996)
    Article CAS Google Scholar
  13. Porter, N.M. et al. Cyclic-AMP dependent protein kinase decreases GABAA receptor current in mouse spinal neurons. Neuron 5, 789– 796 (1996)
    Article Google Scholar
  14. Moss, S.J., Smart, T.G., Blackstone, C.D. & Huganir, R.L. Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 257, 661–665 (1992)
    Article CAS Google Scholar
  15. Connolly, C.N., Krishek, B.J., McDonald, B.J., Smart, T.G. & Moss, S.J. Assembly and cell surface expression of heteromeric and homomeric γ-aminobutyric acid type A receptors. J.Biol. Chem. 271, 89–96 (1996)
    Article CAS Google Scholar
  16. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M.Isolation of monoclonal antibodies specific for human c-myc protooncogene product. Mol. Cell Biol. 5, 3610–3616 (1985)
    Article CAS Google Scholar
  17. Buller, A.L., Hastings, G.A., Kirkness, E.F. & Fraser, C.M. Site-directed mutagenesis of N-linked glycosylation sites on the γ-aminobutyric acid type A receptor α1 subunit. Mol. Pharmacol. 46, 858–865 (1994)
    CAS PubMed Google Scholar
  18. Moss, S.J., Gorrie, G., Amato, A. & Smart, T.G. Modulation of GABA A receptors by tyrosine phosphorylation. Nature 377, 344–348 (1995)
    Article CAS Google Scholar
  19. McDonald, B.J. & Moss, S.J. Conserved phosphorylation of the intracellular domains of GABAA receptor β2 and β3 subunits by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacology 36, 1377 –1385 (1997)
    Article CAS Google Scholar
  20. Angelotti, T.P., Uhler, M.D. & Macdonald, R.L. Enhancement of recombinant γ- aminobutyric acid type A receptor currents by chronic activation of cAMP-dependent protein kinase . Mol. Pharmacol. 44, 1202– 1210 (1993)
    CAS PubMed Google Scholar
  21. Moss, S.J., Doherty, C.A. & Huganir, R.L. Identification of the cAMP-dependent protein kinase and protein kinase C phosphorylation sites within the major intracellular domains of the β1, γ2S and γ2L subunits of the γ-aminobutyric acid type A receptor. J. Biol. Chem. 267, 14470 –14476 (1992)
    CAS PubMed Google Scholar
  22. Benke, D., Fritschy, J.M., Trzeciak, A., Bannwarth, W. & Mohler, H. Distribution, prevalence, and drug binding profile of γ-aminobutyric acid type A receptor subtypes differing in the β-subunit variant. J. Biol. Chem. 269, 27100–27107 (1994)
    CAS PubMed Google Scholar
  23. Heim, R., Cubitt, A.B. & Tsien, R.Y. Improved green fluorescence. Nature 373, 663–664 (1995)
    Article CAS Google Scholar
  24. Wooltorton, J.R.A., Moss, S.J. & Smart, T.G. Pharmacological and physiological characterisation of the murine homomeric β3 GABAA receptors. Eur. J. Neurosci . 9, 2225–2235 (1997)
    Article CAS Google Scholar
  25. Connolly, C.N., Wooltorton, J.R.A., Smart, T.G., & Moss, S.J. Subcellular localization of γ-aminobutyric acid type A receptors is determined by receptor β subunits. Proc. Natl. Acad. Sci. USA 93, 9899–9904 (1996)
    Article CAS Google Scholar
  26. Kano, M., Rexhausen, V., Dreessen, V. & Konnerth, A. Synaptic excitation produces a long-lasting potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356, 601– 604 (1992)
    Article CAS Google Scholar
  27. Kano, M., Kano, M., Fukunaga, K. & Konnerth, A. Ca2+-induced rebound potentiation of gamma-aminobutryic acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II. Proc . Natl . Acad . Sci . USA 93, 13351–13356 (1996)
    Article CAS Google Scholar
  28. Kano, M. & Konnerth, A. Potentiation of GABA-mediated currents by cAMP- dependent protein kinase. Neuroreport 3, 563–566 (1992)
    Article CAS Google Scholar

Download references